THE ABSOLUTE AND RELATIVE BETTI NUMBERS OF A MANIFOLD WITH BOUNDARY

GRIGORIOS TSAGAS

1. Consider a compact manifold M with a boundary B, so that M is the closure of an open submanifold of an n-dimensional orientable Riemannian manifold V, and B is a compact orientable (n - 1)-dimensional manifold. Let $H_p(M, R)$ and $H_{n-p}\{(M, B), R\}$ be respectively the pth Betti group of M and the pth Betti group of M(mod. B). Then by Lefschetz duality theorem the pth Betti group $H_p(M, R)$ and the (n - p)th Betti group $H_{n-p}\{(M, B), R\}$ are dual, so that the absolute Betti number A_p and the relative Betti number R_{n-p} of the manifold M are equal. For a k-pinched manifold M, the numbers A_p and R_q for p = q = 2 are zero, when the number k is greater than a number λ and the second fundamental form on B satisfies some conditions. We can improve the number λ , when the dimension of the manifold M is 5. These results are a generalization of those given in [8].

2. If α , β are two tensors of the manifold *M* of order *p*, then the local inner product of the two tensors α , β is defined by

$$(lpha, eta) = rac{1}{p!} lpha^{i_1 \cdots i_p} eta_{i_1 \cdots i_p} = rac{1}{p!} lpha_{i_1 \cdots i_p} eta^{i_1 \cdots i_p},$$

and the local norm of the tensor α is defined by

$$|lpha|^2 = rac{1}{p!} lpha^{i_1 \cdots i_p} lpha_{i_1 \cdots i_p} \; .$$

If η is the volume element of the manifold *M*, then the global inner product of the two tensors α , β and the global norm of the tensor α are defined, respectively,

$$\langle lpha,eta
angle = \int\limits_{M} (lpha,eta)\eta\;, \qquad \|lpha\|^2 = \int\limits_{M} |lpha|^2\eta\;.$$

If α is a *p*-form, then we have [6, p. 187]

(2.1)
$$\langle \Delta \alpha, \alpha \rangle = \| d\alpha \|^2 + \| \delta \alpha \|^2$$

Communicated by W. P. A. Klingenberg, February 6, 1970. This paper was prepared with support from the S. F. B. grant.