J. DIFFERENTIAL GEOMETRY 5 (1971) 233-249

CURVATURE AND THE EIGENFORMS OF THE LAPLACE OPERATOR

V. K. PATODI

1. Introduction

Let X be a d-dimensional compact oriented Riemannian manifold of class C^{∞} without boundary, \wedge^{p} the space of smooth exterior p-forms, $d: \wedge^{p} \to \wedge^{p+1}$ the operator of exterior differentiation, $d^{*}: \wedge^{p+1} \to \wedge^{p}$ the adjoint of d with respect to the Riemannian metric, and $\Delta = -(dd^{*} + d^{*}d)$ the Laplace operator acting on exterior p-forms for $0 \le p \le d$. It is known that $\Delta: \wedge^{p} \to \wedge^{p}$ has an infinite sequence

$$0 \geq \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \cdots \downarrow -\infty$$

of eigenvalues, each of which is repeated as many times as its multiplicity indicates, and the corresponding sequence $\{\varphi_n\}$ of eigenforms forms a complete orthonormal set in the space \wedge^p with Riemannian inner product. The sum

$$\sum_{n\geq 0} \exp\left(\lambda_n t\right) \varphi_n(x) \otimes \varphi_n(y)$$

converges uniformly on compact subsets of $(0, \infty) \times X$ to the fundamental solution $e^p(t, x, y)$ of the operator $\partial/\partial t - \Delta$ acting on *p*-forms, and the trace $Z^p = \sum_{n\geq 0} \exp(\lambda_n t)$ can be expressed as the integral over the manifold of the pole Tr $e^p = \sum_{n\geq 0} \exp(\lambda_n t) \langle \varphi_n, \varphi_n \rangle, \langle \varphi_n, \varphi_n \rangle$ being the Riemannian inner product of *p*-forms at a point of *X*, that is,

$$Z^p = \int_X \operatorname{Tr} e^p \; .$$

Let Z be the alternating sum of Z^p , that is,

$$Z=\sum_{p=0}^{d}(-1)^{p}Z^{p}$$

and Tr $e = \sum_{p=0}^{d} (-1)^p$ Tr e^p . It is proved in [2] that

Communicated by I. M. Singer, April 20, 1970.