J. DIFFERENTIAL GEOMETRY 5 (1971) 75-83

SPRAYS ON VECTOR BUNDLES

R. H. BOWMAN

1. Introduction

Suppose that $p: TX \to X$ is the tangent bundle of a smooth (C^{∞}) manifold X. A spray on X (or on the tangent bundle $p: TX \to X$), a notion due to Ambrose, Palais and Singer [1] is a smooth cross-section ξ of the tangent bundle σ : $TTX \rightarrow TX$ having the properties

$$p_*\xi = \sigma\xi$$
, $\xi \circ h_\alpha = h_\alpha (h_\alpha)_*\xi$,

where h_{α} is the smooth vector bundle morphism defined by scalar multiplication on each fiber by $\alpha \in R$ [4, p. 68], and $(h_{\alpha})_{*}$ its tangent map.

The purpose of this paper is to generalize the concept of a spray on the tangent bundle of X to a spray on the bundle $q: TX \to X$ when TX admits an additional vector bundle structure q over X, and to discuss in some detail the case where X = TM, and M is a smooth manifold. We define sprays of the first and second type on an arbitrary vector bundle $q: TX \rightarrow X$, and in the case X = TM show that each spray on M induces a spray of the second type on π_* : TTM \rightarrow TM, a spray of the first type on the tangent bundle ${}^1\pi$: TTM $\rightarrow TM$ of TM and investigate the relationship between these sprays. Sprays related to connections are investigated, and it is shown that the sprays of connections induced on the bundle structures of TTM by a linear connection Von M coincide with the sprays induced on these bundles by the spray of the connection ∇ .

The notation employed throughout the paper is essentially that of [4] and [5], with manifolds and vector bundles modeled on Banach spaces.

The general definition 2.

Suppose that $p: TX \to X$ and $q: TX \to X$ are two vector bundle structures on TX over X, and $\phi: TX \to TX$ is a vector bundle isomorphism such that $q \circ \phi$ = p.

Definition. A smooth cross-section ξ of σ : $TTX \rightarrow TX$ is called a spray of the first type on $q: TX \rightarrow X$ if it satisfies the conditions:

i.
$$q_*\xi = \sigma\xi$$
,

Communicated by R. S. Palais, November 26, 1969. Partially supported by a Vanderbilt University Research Council grant.