ASYMPTOTIC BEHAVIOUR OF NON-PARAMETRIC MINIMAL HYPERSURFACES

ERNST A. RUH

1. Introduction

The main result of this paper is Theorem II, which deals with the asymptotic behaviour of non-parametric complete minimal hypersurfaces. In [2], Bombieri, De Giorgi and Giusti showed that hypersurfaces of this type other than hyperplanes exist for dimensions greater than seven. For lower dimensions Theorem II is vacuous because, by theorems of Almgren [1], De Giorgi [6], and Simons [7], the only hypersurfaces of this type are the hyperplanes. The proof of Theorem II relies on Theorem I, which states that the Gauss map of a hypersurface with constant mean curvature is harmonic. A map of Riemannian manifolds is called harmonic if it is an extremal of a certain energy integral which generalizes the classical Dirichlet integral. An extensive study of harmonic maps has been done by Eells and Sampson [3]. If the dimension of a minimal surface is two, then the Gauss map is holomorphic; this is much stronger than harmonic. We expect that the weaker property will still be useful in extending to higher dimensions some of the theorems on 2-dimensional minimal surfaces which are obtained through complex function theory. An example of this method is the proof of Theorem II.

2. Harmonic maps

At this point we begin the discussion of Theorem I. A map $f: M_1 \rightarrow M_2$ of Riemannian manifolds is called harmonic if f is an extremal of the integral

$$E(f)=\int Tr\,f^*g\,dv\,\,,$$

where $Tr f^*g$ denotes the trace of the pullback under f of the Riemannian metric g on M_2 , and dv denotes the volume form on M_1 . For our purposes, the map in question will be the Gauss map $n: M \to S^n$ which sends a point on M into its unit normal vector. Now we are in aposition to state the first theorem.

Theorem I. If $i: M \to E^{n+1}$ is an isometric immersion of the n-dimensional

Received October 2, 1969.