SUBMANIFOLDS OF COSYMPLECTIC MANIFOLDS

G. D. LUDDEN

1. Introduction

Recently B. Smyth [6] has classified those complex Einstein hypersurfaces of a Kaehler manifold of constant holomorphic curvature. This paper was followed by the papers of Chern [2], Nomizu and Smyth [4], Kobayashi [3] and others researching this problem. Yano and Ishihara [7] have studied the analogous problem for Sasakian manifolds, i.e., they have studied invariant Einstein (or η -Einstein) submanifolds of codimension 2 of a normal contact manifold of constant curvature. The result of Smyth rests on the fact that the hypersurface is locally symmetric. We show in this paper that a normal contact manifold which is η -Einsteinian but not Einsteinian cannot be locally symmetric. Thus, since an invariant submanifold of codimension 2 in a normal contact manifold is itself a normal contact manifold, the η -Einstein case studied by Yano and Ishihara will not yield to a study similar to that of Smyth.

Let \tilde{M} be a normal contact manifold or a cosymplectic manifold of constant $\tilde{\phi}$ -sectional curvature, and M an invariant submanifold of codimension 2. The main purpose of this paper is to study the case where M is η -Einsteinian. In particular, we show that if \tilde{M} is cosymplectic then M is locally symmetric. This suggests that a classification similar to that of Smyth may be obtained in this case.

2. Almost contact manifolds

Let \tilde{M} be a C^{∞} -manifold and $\tilde{\phi}$ a tensor field of type (1,1) on \tilde{M} such that

$$ilde{\phi}^{\scriptscriptstyle 2} = -I + ilde{\xi} \otimes ilde{\eta} \; ,$$

where I is the identity transformation, $\tilde{\xi}$ a vector field, and $\tilde{\eta}$ a 1-form on \bar{M} satisfying $\tilde{\phi}\tilde{\xi}=\tilde{\eta}\circ\tilde{\phi}=0$ and $\tilde{\eta}(\tilde{\xi})=1$. Then \bar{M} is said to have an almost contact structure. It is known that there is a positive definite Riemannian metric \bar{g} on \bar{M} such that $\bar{g}(\tilde{\phi}X,Y)=-\bar{g}(X,\tilde{\phi}Y)$ and $\bar{g}(\tilde{\xi},\tilde{\xi})=1$, where X and Y are vector fields on \bar{M} . Define the tensor $\tilde{\Phi}$ by $\tilde{\Phi}(X,Y)=\bar{g}(X,\tilde{\phi}Y)$. Then $\tilde{\Phi}$ is a 2-form. If $[\tilde{\phi},\tilde{\phi}]+d\tilde{\eta}\otimes\tilde{\xi}=0$, where $[\tilde{\phi},\tilde{\phi}](X,Y)=\tilde{\phi}^2[X,Y]+[\tilde{\phi}X,\tilde{\phi}Y]-\tilde{\phi}[\tilde{\phi}X,Y]-\tilde{\phi}[X,\tilde{\phi}Y]$, then the almost contact structure is said to be normal. If $\tilde{\Phi}=d\tilde{\eta}$, the almost contact structure is a contact structure.

Communicated by K. Yano, June 30, 1969.