THE NUMBER OF BRANCH POINTS OF SURFACES OF BOUNDED MEAN CURVATURE

ERHARD HEINZ & STEFAN HILDEBRANDT

Introduction

Let *B* be the unit disk |w| < 1 (w = u + iv), and g = g(w) = (x(w), y(w), z(w))a vector function of class $C^2(B) \cap C^0(\overline{B})$ satisfying in *B* the partial differential equations

$$(0.1) \qquad \qquad \Delta \mathfrak{x} = 2H(w)(\mathfrak{x}_u \times \mathfrak{x}_v) ,$$

and

where H = H(w) is a bounded function on \overline{B} . Furthermore, assume that we have

$$|\mathfrak{g}(w)| \leq 1 \qquad (w \in \overline{B}) ,$$

and

(0.4)
$$A(\mathbf{x}) = \frac{1}{2} \int_{B} \int (\mathbf{x}_{u}^{2} + \mathbf{x}_{v}^{2}) du \, dv < +\infty ,$$

and that g = g(w) maps the unit circle ∂B topologically onto a closed rectifiable Jordan curve $\Gamma^* \subset R^3$. Geometrically speaking, these conditions express the fact that g = g(w) represents a surface in R^3 of finite area A(g), contained in the unit ball $|g| \leq 1$, which is bounded by Γ^* and whose mean curvature at each regular point coincides with the function H(w).

The various existence proofs for such surfaces available in the literature ([2], [5], [6], [14], [15], and [16] deal with the case, where H(w) is a constant, while [7] treats the general case) leave the question open, whether, for a given curve Γ^* , there always exists a surface of prescribed mean curvature which is free of branch points. While even for minimal surfaces ($H(w) \equiv 0$) this is an unsolved problem, it is nevertheless possible to estimate the total number of these branch points in terms of geometric quantities associated with Γ^* . The

Received July 9, 1969.