THE DENSENESS OF COMPLETE RIEMANNIAN METRICS

JAMES A. MORROW

The purpose of this note is to expand a bit on a theorem of K. Nomizu and H. Ozeki. In [1], they proved that on any paracompact connected C^{∞} manifold there is a complete Riemannian metric. In fact, it was shown that if M is a C^{∞} manifold, T_pM is the tangent space of M at $p \in M$, $\xi, \eta \in T_pM$, and $g_p(\xi, \eta) = g_p = g$ is a Riemannian metric on M, then there is a C^{∞} function f on M such that $fg = (fg)_p(\xi, \eta) = f(p)g_p(\xi, \eta)$ is a complete Riemannian metric on M. We intend to prove the following theorem.

Theorem. Let M be a connected C^{∞} manifold with Riemannian metric g. Then given a compact subset $K \subseteq M$, there is a complete Riemannian metric h on M such that $h|_{K} = g|_{K}$, where $h|_{K}$ denotes "h restricted to K".

Corollary. If the space of Riemannian metrics on a connected C^{∞} manifold M is given the topology of convergence of all derivatives of order up to l on compact subsets of M, then the complete metrics form a dense subset of the space of all metrics. (This is true for each fixed l, $1 \le l \le \infty$.)

We make the following remarks.

Remark 1. The result can clearly be extended to non-connected paracompact manifolds.

Remark 2. In case *M* is compact, the result is trivial.

Before proceeding with the proof of the theorem, for the convenience of the reader we review the proof of Nomizu-Ozeki. Assume g is not complete, and let $B_{v}(r)$ be the metric ball

$$B_{p}(r) = \{q \in M \mid \mu_{q}(p,q) \leq r\},\$$

where μ_g is the metric on *M* arising from the Riemannian metric *g*. Further let

$$d(p) = \{\sup r | B_p(r) \text{ is compact} \}$$
.

Then $d: M \to \mathbf{R}$ is a continuous real-valued function. It is easy to see that d(p) > 0 for all $p \in M$, and it is not difficult to show that there is a C^{∞} function $\overline{f}: M \to \mathbf{R}^+$ such that $\overline{f}(p) < 1/d(p)$ for all $p \in M$. Let $f = (\overline{f})^2$. Then fg is the required complete Riemannian metric. The proof of the completeness of fg is not difficult and can be found in [1].

We now give the proof of our theorem. Let $M = \bigcup K_j$, where the K_j are compact, $K_j \subseteq \text{int} (K_{j+1})$, (int (N) denotes the interior of a subset N of M). If

Received June 24, 1969, and, in revised form, December 14, 1969.