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WEYL MANIFOLDS

GERALD B. FOLLAND

In 1918 H. Weyl [6] introduced a generalization of Riemannian geometry
in his attempt to formulate a unified field theory. Weyl’s theory failed for
physical reasons, but it remains a beautiful piece of mathematics, and it
provides an instructive example of non-Riemannian connections. In § 1 of this
paper we summarize the classical definitions and theorems concerning Weyl
structures; in § 2 we show that a Weyl structure is equivalent to a connection
on a certain line bundle, prove the classical results using modern machinery
and notation (following Kobayashi & Nomizu [4] and Nelson [5]), and derive
a characterization of Weyl structures in terms of their induced linear
connections.

The author wishes to express his indebtedness to Professor Raoul Bott, in
particular for the valuable conversations through which most of the ideas in
this paper were born.

1. Summary of classical results

The physical motivation for Weyl’s ideas is as follows. In the general theory
of relativity, Einstein used Riemannian geometry as a model for physical space.
However, the universe is not really a Riemannian manifold, for there is no
absolute measure of length; that is, instead of being given a scalar product on
the tangent space at each point, we are given a scalar product determined only
up to a positive factor at each point. This fact produces no essential change
in the geometry provided that a determination of length at one point uniquely
induces a determination of length on the whole manifold, i.e., if it makes sense
to compare the size of two tangent vectors at two distinct points. Weyl
conjectured that this is not the case; rather, that an analogy should be drawn
with the theory of linear connections, in which it generally makes sense to say
that two vectors at two distinct points have the same direction only if there is
specified a curve between the two points along which “parallel translation” can
take place. Hence in the Weyl theory a determination of length at one point
induces only a first-order approximation to a determination of length at
surrounding points. We proceed to make these ideas precise.

M will always denote an n-dimensional smooth manifold, 7,M the tangent
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