CONFORMAL CHANGES OF RIEMANNIAN METRICS

KENTARO YANO & MORIO OBATA

0. Introduction

Let M be an *n*-dimensional differentiable connected Riemannian manifold with metric tensor g. Since we consider several Riemannian metrics on the same manifold M, we denote by (M, g) the Riemannian manifold M with metric tensor g. The Riemannian metric g defines, in the tangent space at each point of the manifold, the inner product g(X, Y) of two vectors X and Y at the point and the angle θ between two vectors by $\cos \theta = g(X, Y)/[\sqrt{g(X, X)} \cdot \sqrt{g(Y, Y)}]$. Let there be given two metrics g and g^* on M. If the angles between two vectors with respect to g and g^* are always equal to each other at each point of the manifold, we say that g and g^* are conformally related or that g and g^* are conformal to each other. A necessary and sufficient condition that g and g^* of M be conformal to each other is that there exist a function ρ on M such that $g^* = e^{2\rho}g$. We call such a change of metric $g \to g^*$ a conformal change of Riemannian metric. Yamabe [21] proved

Theorem A. For any Riemannian metric given on a compact C^{∞} differentiable manifold of dimension $n \ge 3$, there always exists a Riemannian metric which is conformal to the given metric and whose slalar curvature is constant.

So in the study of conformal properties of a compact M we can assume the scalar curvature of M to be constant.

In the above discussion, what has been changed is the Riemannian metric g at each point of the manifold M. We are now going to consider point transformations which induce a conformal change of metric of the manifold.

Let (M, g) and (M', g') be two Riemannian manifolds, and $f: M \to M'$ a diffeomorphism. Then $g^* = f^{-1}g'$ is a Riemannian metric on M. When g^* and g are conformally related, that is, when there exists a function ρ on M such that g^* $= e^{2\rho}g$, we call $f: (M, g) \to (M', g')$ a conformal transformation. In particular, if ρ = constant, then f is called a homothetic transformation or a homothety; if $\rho = 0$, then f is called an isometric transformation or an isometry.

The group of all conformal (homothetic or isometric) transformations of (M, g) on itself is called a *conformal transformation* (a homothetic transformation or an isometry) group and is denoted by C(M) (H(M) or I(M)). We

Communicated March 19, 1969. The first author was a G. A. Miller Visiting Professor at the University of Illinois, and the second author was supported by an NSF Senior Foreign Scientist Fellowship at Lehigh University.