SOME PROPERTY OF CLOSED HYPERSURFACES IN RIEMANNIAN MANIFOLDS

YOSIO MUTŌ

1. The main result of the present paper is the

Theorem. Let M^3 be a three-dimensional symmetric Riemannian manifold whose sectional curvature $K(P, \sigma)$ satisfies $(1 - \delta)T \le K(P, \sigma) \le T$, where T is a positive constant and $0 \le \delta < 1/2$. Let M be a closed surface in M^3 with the mean curvature H satisfying H = C, C being a positive constant, and assume that M is strictly convex, and the second fundamental form of M is positive. Let the total volume or the total area of M be denoted by V_M , and the volume of the sebset M_L of M, where the difference of the principal curvatures exceeds 2L, be denoted by V(L). If $(1 - \delta)L^2 > \delta C^2$, then V(L) satisfies

(0)
$$\frac{V(L)}{V_{M}} \leq \frac{\delta^{2}C^{2}}{\delta(25\delta - 16)C^{2} + 8(1 - \delta)(2 - 3\delta)L^{2}}.$$

Corollary. If M^3 is a space of constant curvature with positive scalar curvature, then the surface M of the above theorem is totally umbilical.

2. Let M^{n+1} be a Riemannian manifold of dimension n + 1, K_{kjih} the curvature tensor of M^{n+1} , and M^n a hypersurface of M^{n+1} , whose equation is given by $x^h = x^h(u^a)$ locally. Throughout this paper all the indices run as follows: $h, i, j, k = 1, \dots, n + 1$; $a, b, c, d = 1, \dots, n$.

We define $B_a{}^h$ as usual by $B_a{}^h = \partial_a x^h$ where $\partial_a = \partial/\partial u^a$. From $B_a{}^h$ and the unit normal vector N^h we can construct a matrix $(B_a{}^h, N^h)$ and denote its reciprocal matrix by $(B^a{}_h, N_h)$. $g_{ba} = B_b{}^i B_a{}^h g_{ih}$ is the first fundamental tensor of M^n . Using the Van der Waerden-Bortolotti operator ∇ we get $\nabla_b B_a{}^h =$ $h_{ba}N^h, \nabla_b N^h = -h_b{}^a B_a{}^h$, where h_{ba} is the second fundamental tensor of M^n . The equation of Codazzi is

(1)
$$\nabla_c h_{ba} - \nabla_b h_{ca} = K_{kjih} B^{kji}_{cba} N^h ,$$

and the equation of Gauss is

$$(2) 'K_{dcba} = K_{kjih} B_{dcba}^{kjih} + h_{cb} h_{da} - h_{db} h_{ca} ,$$

where K_{dcba} is the curvature tensor of the Riemannian manifold M^n . If M^n is a closed hypersurface, then

Communicated by K. Yano, August 5, 1968.