HIGHER ORDER CONSERVATION LAWS

A. P. STONE

1. Introduction

Let A denote the ring of germs of analytic functions at a point of an analytic manifold, and \mathscr{E} the localization of the A-module of differential forms on this manifold. Let $\underline{h} \in \operatorname{Hom}(\mathscr{E}, \mathscr{E})$. Then $\theta \in \mathscr{E}$ is said to be a conservation law for \underline{h} if both θ and $\underline{h}\theta$ are exact. More generally, θ is a conservation law for a finite collection of elements $\underline{h}_i \in \operatorname{Hom}(\mathscr{E}, \mathscr{E})$ if θ and $\underline{h}_i\theta$ are all exact. The problem which has been investigated in previous papers (see [4], [5], and [6]) has been that of determining all conservation laws $\theta \in \mathscr{E}$ for a given finite collection of endomorphisms \underline{h}_i of \mathscr{E} . Certain conditions have usually been imposed on the \underline{h}_i , namely that the \underline{h}_i have distinct eigenvalues and that certain concomitants associated with the \underline{h}_i vanish identically.

The problem which is studied in this paper generalizes the conservation law problem in another direction. Let $\Lambda^{p}\mathscr{E}$ denote the differential forms of degree p, and $T \in \operatorname{Hom}(\Lambda^{p}\mathscr{E}, \Lambda^{p}\mathscr{E})$. Then $\theta \in \Lambda^{p}\mathscr{E}$ is called a conservation law of order p for T, if both θ and $T\theta$ are exact. The problem is then one of determining all conservation laws for a given T. In the sequel the case in which elements T are induced by an element $\underline{h} \in \operatorname{Hom}(\mathscr{E}, \mathscr{E})$ is considered, and the main result is stated in Theorem 3.4. An alternate characterization of conservation laws is then given in § 4.

2. Preliminaries

Let (u^1, \dots, u^n) form a local coordinate system in A at some point P of the manifold at which $u^i(P) = 0$. If d is the operation of exterior differentiation, then (du^1, \dots, du^n) is locally a basis for \mathscr{E} which has dimension n. Moreover, \mathscr{E} is a free A-module, and the exterior algebra $\Lambda^*\mathscr{E}$ generated by \mathscr{E} is a direct sum

$$\Lambda^*\mathscr{E} = \Lambda^0\mathscr{E} \oplus \Lambda^1\mathscr{E} \oplus \cdots \oplus \Lambda^n\mathscr{E},$$

where $\Lambda^{0} \mathscr{E} = A$ and $\Lambda^{1} \mathscr{E} = \mathscr{E}$. The dimension of $\Lambda^{p} \mathscr{E}$, the space of differential

Communicated by A. Nijenhuis, September 19, 1968. This research was supported in part by NSF Grant GP-6560.