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CRITICAL POINTS OF THE DISPLACEMENT FUNCTION
OF AN ISOMETRY

VILNIS OZOLS

Introduction

Given a Riemannian manifold M and a group of isometries of M it is natural
to study the fixed point set of this group. This problem was considered by S.
Kobayashi in [9], [10], and by R. Bott in [2], in the case where the group is
a 1-parameter group of isometries. In [4], Kobayashi shows that if {g,} is such
a group, then the fixed point set of {g,} is a totally geodesic submanifold of
even codimension. In fact, his proof shows that the fixed point set of any group
of isometries is a totally geodesic submanifold. The fixed point set of the
1-parameter group {g,} is just the set of zeros of the associated Killing vector
field X, and in [7] and [8] R. Hermann considers the more general problem
of the critical points of the function | X|* giving the square of the length of X.
He shows that these critical points are exactly the points lying on geadesic
orbits of {g,}. Moreover, he shows that if M has curvature K < O, then the
set of critical points of | X?] is convex (that is, any geodesic segment between
two critical points lies in the critical set).

We consider the stili more general situation of a single isometry f, and look at
the critical point set Crit (f) of the function ¢%, where  (x} = distance (x, f(x)).
It is evident that Crit (f) contains the fixed points of f.

In Chapter I we let M be any Riemannian manifold and f: M — M an iso-
metry whose displacement &, is small enough so that f takes each point into
the complement of its cut locus. We say such an isometry has “small displace-
ment.” The main theorems are:

(1.2,1) Theorem. Letf: M — M be an isometry of small displacement
and xe M. Then x e Crit (f) if and only if f preserves the unique minimizing
geodesic between x and f(x).

(1.3.4) Theorem. Let M have curvature K < 0, and assume f: M — M
is an isometry of small displacement. Then

(i) Crit(p is a totally geodesic submanifold possibly with boundary,

(ii) 8, takes its absolute minimum on Crit (f).
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