CLOSED CONFORMAL VECTOR FIELDS

SHÛKICHI TANNO & WALDEMAR C. WEBER

1. Introduction

Let M be a connected *m*-dimensional Riemannian manifold with metric g. A vector field X on M is conformal if and only if

(1.1)
$$L_{x}g = -(2/m)\delta\xi \cdot g,$$

where L_X denotes the Lie derivation with respect to X, $\xi = g(X, \cdot)$ is the covariant form of X with respect to g, and $\delta \xi$ is the corresponding codifferential form of ξ . Let d be the exterior differential operator, and Q the Ricci operator which is defined on the 1-form ξ by $Q\xi = R_1(X, \cdot)$, R_1 being the Ricci tensor.

If M is a connected 2-dimensional Riemannian manifold with constant scalar curvature S > 0, and M admits a conformal non-Killing vector field, then M is globally isometric with a sphere (cf. [1]).

Next let M be a connected, compact Riemannian manifold of dimension m > 2 with constant scalar curvature S > 0. Then M is globally isometric with a sphere, if M admits a conformal non-Killing vector field X and any one of the following conditions is satisfied:

(a) M is an Einstein space [6], [8],

(b) the Ricci tensor is parallel [5],

(c) trace Q^2 is constant [4],

(d) $Qd\delta\xi = kd\delta\xi$ for some constant k [9],

(e) $Qd\delta C_0^*(M) \subset d\delta C_0^*(M)$, where $C_0^*(M)$ denotes the space of covariant forms of all conformal vector fields on M [1],

(f) ξ is an exact form [4].

(a) and (e) have been proved independently. Conditions (d) and (e) are related to (f). If ξ is exact, then ξ vanishes at some point of M. The first theorem of this note is a generalization of (f).

Theorem 1. Let M be a connected compact Riemannian manifold with the constant scalar curvature S > 0. Then M is globally isometric with a sphere if M admits a closed conformal vector field X which satisfies one of the conditions:

(i) the harmonic part h of ξ vanishes at some point of M,

(ii) X vanishes at some point of M,

Communicated by K. Yano, June, 24, 1968.