A THEOREM ON MINIMAL SURFACES

L. JONKER

1. Introduction

It is well known that $x: M^k \to \mathbb{R}^{k+p}$ is a minimal immersion into the Euclidean space \mathbb{R}^{k+p} if and only if

$$\Delta \langle a, x \rangle = 0$$
 for all vectors $a \in \mathbb{R}^{k+p}$,

where Δ denotes the Laplacian on M^k . This result follows immediately from the relation

(1)
$$\Delta \langle a, x \rangle = - \langle a, H \rangle ,$$

where H is the mean curvature vector of the immersion. Osserman [3, Theorem 2] proved the following theorem:

If $x: M^2 \to \mathbb{R}^3$ is such that for some $a \in \mathbb{R}^3$, $\Delta \langle a, x \rangle = 0$, then M^2 is a minimal surface, or else a locally cylindrical surface with its generators parallel to a.

The purpose of this paper is to generalize Osserman's theorem to the case $x: M^2 \to \mathbb{R}^n$. We will assume as a natural generalization of Osserman's hypothesis the existence of an n-2 dimensional subspace $A \subset \mathbb{R}^n$ so that $\Delta \langle a, x \rangle = 0$ for all $a \in A$. The main theorem is the following:

Theorem. Let M^2 be a connected manifold, and A an n-2 dimensional subspace of Euclidean space \mathbb{R}^n . If $x: M^2 \to \mathbb{R}^n$ is an immersion such that

(2)
$$\Delta \langle a, x \rangle = 0$$
 for all $a \in A$,

then there are only two possibilities:

1. M^2 is minimally immersed in \mathbb{R}^n , or

2. there is a set $\{m_i\}$ of isolated points in M so that each point of the complement M_0 of this set has a neighborhood U which is mapped onto a regular curve γ in B, the orthogonal complement of A, by the orthogonal projection π with kernel A in such a way that x | U is a minimal immersion in the cylinder $\gamma \times A$.

Conversely, if the immersion $x: M^2 \to \mathbb{R}^n$ is as described under 1 or 2, it satisfies the hypothesis of the theorem.

The type of immersion described under point 2 will for convenience be referred to as type 2. Similarly for type 1.

Received August 15, 1968. This research was supported by the National Research Council of Canada.