COMPLEX HYPERSURFACES OF A COMPLEX PROJECTIVE SPACE

KOICHI OGIUE

1. Statement of results

Let M be a compact complex hypersurface of the complex projective space $P_{n+1}(C)$. Then by a well known theorem of Chow, M is algebraic. We shall prove the following theorems.

Theorem 1. Let M be a compact complex hypersurface of the complex projective space $P_{n+1}(C)$, and suppose that the Euler-Poincaré characteristic $\chi(M)$ of M is n + 1. Then

(1) M is a complex hyperplane $P_n(C)$ if n is even.

(2) M is either a complex hyperplane $P_n(C)$ or a complex hyperquadric in $P_{n+1}(C)$ if n is odd.

Theorem 2. Let M be a complete complex hypersurface of the complex projective space $P_{n+1}(C)$. If every holomorphic sectional curvature of M is greater than 1/2 with respect to the metric induced from the Fubini-Study metric of $P_{n+1}(C)$, then M is a complex hyperplane $P_n(C)$.

It should be remarked that the referee of this paper has made the following conjecture stronger than Theorem 2: Let M be a complete complex hypersurface of the complex projective space $P_{n+1}(C)$. If M admits a Kaehler metric with respect to which M is of holomorphic pinching greater than 1/2, then M is a complex hyperplane $P_n(C)$.

Theorem 3. Let M be a compact complex hypersurface of the complex projective space $P_{n+1}(C)$. If every holomorphic sectional curvature of M is positive with respect to the metric induced from the Fubini-Study metric of $P_{n+1}(C)$, then M is either a complex hyperplane $P_n(C)$ or a complex hyperquadric in $P_{n+1}(C)$.

2. Proof of Theorem 1

Let *h* be the generator of $H^2(P_{n+1}(C), \mathbb{Z})$ corresponding to the divisor class of a hyperplane $P_n(C)$. Then the total Chern class $c(P_{n+1}(C))$ of $P_{n+1}(C)$ is given by

$$c(P_{n+1}(C)) = (1 + h)^{n+2}$$
.

Received July 29, 1968 and, in revised forms, September 22 and November 25, 1968. The author wishes to express his sincere gratitude to Professor M. Obata for much valuable advice.