AN INTEGRAL FORMULA FOR IMMERSIONS IN EUCLIDEAN SPACE

ROBERT B. GARDNER

1. Introduction

This paper derives a general rigidity theorem and an integral formula for immersions of a compact oriented riemannian manifold without boundary in a euclidean space. The formula is applied to a volume-preserving immersion to establish a simple geometric criterion that the immersion be isometric. As the integral formula has a formal resemblance to one derived by Chern and Hsiung in [1], we conclude the paper with some remarks about that work.

2. Notations and conventions

Let M be a compact oriented m-dimensional riemannian manifold without boundary with metric ds^{24} , and let

$$X\colon M\to R^{m+n}$$

be an immersion in an (m + n)-dimensional euclidean space R^{m+n} . As such M admits a second riemannian metric,

$$ds^2 = dX \cdot dX$$
.

We fix the range of indices so that the capital Latin indices run from 1 to m + n, the small Greek indices from 1 to m, and the small Latin indices from m + 1 to m + n.

Matters being so, we choose orthonormal coframes $\{\tau^{\alpha *}\}$ for ds^{2*} on M which diagonalize ds^2 with respect to ds^{2*} . Thus

$$ds^{2\sharp} = \Sigma(\tau^{lpha\sharp})^2$$
, $ds^2 = \Sigma g_{lpha}(\tau^{lpha\sharp})^2$,

and the first invariants of the pair of metrics are the elementary symmetric functions in the functions g_{α} .

Next we choose a family of orthonormal frames $\{e_A\}$ on X(M) in \mathbb{R}^{m+n} in such a way that $\{e_a\}$ are unit tangent vectors of X(M) and the pull back of the dual coframe $\{\tau^A\}$ satisfies

$$\tau^{\alpha}=h_{\alpha}\tau^{\alpha \sharp},$$

Received July 3, 1968, and, in revised form, September 10, 1968.