TRANSFORMATION GROUPS ON RIEMANNIAN SYMMETRIC SPACES

TAKUSHIRO OCHIAI

1. On any Riemannian space N, we denote by I(N) (resp. by $I(N)^0$) the group of all isometries (resp. the identity connected component of I(N)). The purpose of this note is to prove the following results.

Theorem 1. Let M be a Riemannian symmetric space of the noncompact type, and L a (not necessary connected) effective Lie transformation group on M. If $L \supset I(M)^\circ$, then $I(M) \supset L$.

Corollary (E. Cartan). Let M be a Riemannian symmetric space of the noncompact type. Then I(M) is isomorphic to the group of all automorphisms of $I(M)^{0}$.

Theorem 2. Let M be an irreducible Riemannian symmetric space which is not of the Euclidian type, and let \mathcal{D} be an $I(M)^{\circ}$ -invariant differential operator on M. Then any transformation f of M leaving \mathcal{D} invariant is an isometry.

Theorem 1 has been proved partially in [4]. The author wishes to thank Professor T. Nagano for his valuable and generous suggestions.

2. Denote by G_n the isotropy subgroup of any transitive transformation group G on a manifold N at any point $n \in N$, and by M a Riemannian symmetric space of the noncompact type unless stated otherwise. Then the following properties of M are well known:

(i) M is homeomorphic to an open cell.

(ii) Each irreducible factor in the de Rham decomposition of M is again a Riemannian symmetric space of the noncompact type.

(iii) $I(M)^{\circ}$ is semi-simple.

(iv) $I(M)^{\circ}$ is also the identity connected component of the group of all isometries of any $I(M)^{\circ}$ -invariant metric on M.

(v) $I(M)^{0}_{m}$ ($m \in M$) is a maximal compact subgroup of $I(M)^{0}$.

(vi) $I(M)_m^0 \neq I(M)_n^0$ if $m \neq n$ $(m, n \in M)$.

A Riemannian symmetric space N (not of the Euclidian type) is irreducible if and only if $I(N)^0$ is simple, and in this case, the linear isotropy representation of $I(N)^0_n$ ($n \in N$) is irreducible.

Lemma 1. Let G be an effective Lie transformation group on M such that

Communicated by Y. Matsushima, May 13, 1968.