SYMMETRIC SPACES WHICH ARE REAL COHOMOLOGY SPHERES

JOSEPH A. WOLF

This is a survey in which we collate some known results using semi-standard techniques, dropping the condition of simple connectivity in Kostant's work [2] and proving

Theorem 1. Let M be a compact connected riemannian symmetric space. Then M is a real cohomology (dim M)-sphere if and only if

(1) M is an odd dimensional sphere or real projective space; or

(2) $M = \overline{M}/\Gamma$ where (a) $\overline{M} = \mathbf{S}^{2r_1} \times \cdots \times \mathbf{S}^{2r_m}$, $r_i > 0$, product of $m \ge 1$ even dimensional spheres, and (b) Γ consists of all $\gamma = \gamma_1 \times \cdots \times \gamma_m$, where γ_i is the identity map or the antipodal map of \mathbf{S}^{2r_i} , and the number of γ_i which are antipodal maps, is even; or

(3) M = SU(3)/SO(3) or $M = {SU(3)/Z_3}/SO(3)$; or

(4) $M = O(5)/O(2) \times O(3)$, non-oriented real grassmannian of 2-planes through 0 in \mathbb{R}^{5} .

In (2) we note $\pi_1(M) = \Gamma \cong (\mathbb{Z}_2)^{m-1}$; in particular the even dimensional spheres are the case m = 1. In (3) we note that the first case is the universal 3-fold covering of the second case. In (4) we have $\pi_1(M) \cong \mathbb{Z}_2$.

Theorem 1 is based on a series of lemmas which can be pushed, with appropriate modification, to the case of a real cohomology *n*-sphere of dimension greater than *n*. Here we make the convention that a 0-sphere is a single point. By using a cohomology theory which satisfies the homotopy axiom (such as singular theory) we can also drop the requirement of compactness. Thus we push the method of proof of Theorem 1 and obtain

Theorem 2. Let M be a connected riemannian symmetric space. Then M is a real cohomology n-sphere, $0 \le n \le \dim M$, if and only if $M = M' \times M''$ where (α) M'' is a product whose $l \ge 0$ factors are euclidean spaces and irreducible symmetric spaces of noncompact type, and (β) M' is one of the following spaces.

(1) $M' = \overline{M} / \Gamma^{\theta}$, where $\overline{M} = \mathbf{S}^{2\tau_1} \times \cdots \times \mathbf{S}^{2\tau_m}$ is the product of $m \ge 0$ spheres of positive even dimensions $2r_i$, $\Gamma \cong (\mathbf{Z}_2)^m$ consists of all $\gamma_1 \times \cdots \times \gamma_m$ such that γ_i is the identity or antipodal map on $\mathbf{S}^{2\tau_i}$, θ is any one of the 2^m characters on Γ , and Γ^{θ} is the kernel of θ . Express $\theta = \theta_{i_1} \cdots \theta_{i_s}$, where

Communicated by S. Smale, January 12, 1967. Research partially supported by National Science Foundation Grant GP-5798.