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SOME FROBENIUS THEOREMS
IN GLOBAL ANALYSIS

J. A. LESLIE

Introduction

In [6] we introduced a notion of differentiability which permitted us to prove
that the group of C°° diffeomorphisms can be given the structure of a Lie
group. This notion of differentiability as distinct from the Frechet definition
does not depend on a topological or quasi-topological structure on the vector
space of continuous linear transformations L(E, F) between topological vector
spaces E, F (see §1 below). However, in [6], to prove the fundamental ele-
mentary theorems of analysis, we used the notion of quasi-topology introduced
by A. Bastiani.

In § 1 it is shown how these theorems can be established by elementary
techniques.

In §2 a version of the Frobenius theorem is proved (see Theorem 3).
Although our proof of Theorem 3 differs in several essential points from an
analogous proof in Dubinsky [4] of an analogous theorem, we found his ideas
quite useful. In Proposition 6 it is proved that under the hypotheses of
Theorem 3 a C n differential equation admits a Cn flow.

In § 3 a second version of the Frobenius theorem is proved in the context
of Banach chains.

In §4 a Frobenius theorem on the integrability of finite codimensional
sub-bundles of the tangent bundle of manifolds modelled on Banach chains
is proved.

In §5 there is given an application of §§ 3 and 4 in the context of the group
of diffeomorphisms of a compact connected smooth manifold; there, it is
shown that finite dimensional and finite codimensional subalgebras of the Lie
algebra of the right invariant vector fields on Diff (M) are integrable.

Corollaries 1 and 2 of Theorem 5 were pointed out to us in a letter by
C. J. Earle and J. Eells. The author wishes to express his appreciation to the
referee for his valuable suggestions and numerous helpful comments.
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