NON-PARAMETRIC HYPERSURFACES WITH BOUNDED CURVATURES

HARLEY FLANDERS

1. Introduction

We work with the hypersurface in E^{n+1} which is the graph of a C'' function

$$u = u(x^1, \dots, x^n)$$

on an open ball $\sum (x^i)^2 < R^2$ in E^n . We use the notation

$$p_i = \partial u/\partial x^i, \qquad r_{ij} = \partial^2 u/\partial x^i \partial x^j,$$

$$p = (p_1, \dots, p_n), \qquad R = ||r_{ij}||,$$

$$w^2 = 1 + |p|^2 = 1 + \sum p_1^2.$$

We also introduce the matrix

$$A = -\frac{1}{w}R\left(I - \frac{1}{w^2} \iota_{pp}\right).$$

It is known that A has geometrical significance, indeed, its characteristic roots are the principal curvatures of the hypersurface (see Flanders [3, pp. 116-126] for details). The various curvatures $K_1 =$ mean curvature, K_2, \dots, K_n (= total curvature) are given by the characteristic polynomial:

$$\det(tI-A)=t^n-\binom{n}{1}K_1t^{n-1}+\binom{n}{2}K_2t^{n-2}-\cdots+(-1)^nK_n.$$

In [5], Heinz proved that if $|K_1| \ge a < 0$ for the function u = u(x, y) of two variables defined over $x^2 + y^2 < R^2$, then $R \le 1/a$. This was generalized to n variables in Chern [1, Theorem 1] and independently in Flanders [4]. Again the hypothesis $|K_1| \ge a > 0$ leads to $R \le 1/a$ and this is best possible.

Heinz [5] also considered a surface u = u(x, y), $x^2 + y^2 < R^2$, for which the total (Gaussian) curvature

$$K_2 = \frac{rt - s^2}{w^4}$$
, $(w^2 = 1 + p^2 + p^2)$

Communicated by S. S. Chern, January 22, 1968. This research was supported by National Science Foundation Grant GP6388. Reproduction for any purpose by the United States Government is permitted.