SIMPLE CLOSED GEODESICS ON PINCHED SPHERES

WILHELM KLINGENBERG

Let M be a compact simply connected *n*-dimensional riemannian manifold. If the values of the sectional curvature K of M satisfy the condition min $K: \max K > 1/4$ then M is homeomorphic to the *n*-sphere S^n . We therefore call such a manifold a pinched sphere. Cf. [1], [3] for the proof of this so-called sphere theorem, and [2] for a complete exposition.

By multiplying the riemannian metric of such a manifold M with an appropriate positive constant we obtain a manifold for which the relation

$$(*) 1/4 < \kappa \le K \le 1$$

holds. That is to say, such a manifold is curved stronger than the sphere $S^n(4)$ of constant curvature 1/4 and curved less strongly than the unit sphere $S^n = S^n(1)$. This raises the problem of existence, on such a manifold, of simple closed geodesics of length between 2π and 4π , the length of the great circles on $S^n(1)$ and $S^n(4)$ respectively. The example of the *n*-dimensional ellipsoid with pairwise different axes suggests that there may be, but not more than, n(n + 1)/2 such closed geodesics on a manifold M satisfying (*).

In the present paper we shall first prove the following

Theorem 1. On a compact simply connected n-dimensional riemannian manifold M satisfying (*) there exist at least n simple closed geodesics with length in $[2\pi, 2\pi/\sqrt{\kappa}]$.

To formulate our next result, for each integer $n \ge 2$ we define the integer g(n) as 2n - s(n) - 1 with $s(n) = n - 2^{k}$, $0 \le s(n) < 2^{k}$. Note that for $n = 2^{2^{k}} - 1$ we have s(n) = (n - 1)/2 and hence $g(n) \ge (3n - 1)/2$.

Theorem 2. Let M be a compact simply connected n-dimensional riemannian manifold satisfying (*) with κ (~0.64) as the solution of $2\kappa \sin \frac{\pi}{2\sqrt{\kappa}}$ = 1. Then on M there exist g(n) simple closed geodesics of length in $[2\pi, 4\pi[$. If κ (~0.46) is the solution of $2\sqrt{\kappa} \sin \frac{\pi}{2\sqrt{\kappa}} = 1$, then there exist at least g(n-1) such geodesics on M.

Suppose that on M the closed geodesics of length $< 4\pi$ are not isolated or are non-degenerate. If (*) holds with $\kappa \sim 0.64$, then on M there exist exactly

Communicated April 15, 1968. This paper was completed with a support from NSF grant GP-6974.