MINIMAL IMBEDDINGS OF R-SPACES

MASARU TAKEUCHI & SHOSHICHI KOBAYASHI

1. Introduction

Let G be a connected real semi-simple Lie group without center and U a parabolic subgroup of G. The quotient space G/U is called an *R*-space. A maximal compact subgroup K of G is transitive on G/U so that an *R*-space is necessarily compact. Let $\mathfrak{G} = \mathfrak{R} + \mathfrak{P}$ be a Cartan decomposition of the Lie algebra \mathfrak{G} of G with respect to the Lie algebra \mathfrak{R} of K. The main purpose of this paper is to construct a natural imbedding φ of an *R*-space G/U into \mathfrak{R} with the following properties:

- (1) φ is *K*-equivariant;
- (2) φ has minimum total curvature;

(3) If G is simple and $K/K \cap U$ is a symmetric space, then φ is isometric and $\varphi(G/U)$ is a minimal submanifold of a hypersphere in \mathfrak{P} in the sense that its mean curvature normal is zero.

In general, an *n*-dimensional submanifold M of the hypersphere $S^{N}(r)$ of radius r about the origin in the Euclidean space \mathbb{R}^{N+1} is a minimal submanifold if and only if

$$\Delta y^i = -\frac{n}{r^2} y^i$$
 on M for $i = 1, \dots, N+1$,

where (y^1, \dots, y^{N+1}) is a coordinate system for \mathbb{R}^{N+1} and Δ is the Laplacian of M. For many symmetric R-spaces we verify that the Laplacian Δ for functions has no eigen-value between 0 and $-n/r^2$. We do not know whether this is true or not in general for all symmetric R-spaces.

Previously, it was known that φ has minimum total curvature if G/U is a Käehlerian C-space (Kobayashi [6]) or if G/U is a symmetric space of rank 1 (Tai [15]). For a symmetric R-space G/U, the imbedding φ has been considered by Nagano [13], and has also been conjectured to have minimum total curvature (Kobayashi [7]). The class of symmetric R-spaces includes

(i) all hermitian symmetric spaces of compact type;

(ii) Grassmann manifolds $O(p + q)/O(p) \times O(q)$, $Sp(p + q)/Sp(p) \times Sp(q)$;

Received November 9, 1967 and, in revised form, February 5, 1968. The work of the first author was partially supported by NSF Grant GP-6974, and that of the second author by NSF Grant GP-5798.