HYPERSURFACES OF COMPLEX PROJECTIVE SPACE WITH CONSTANT SCALAR CURVATURE

SHOSHICHI KOBAYASHI

1. Introduction

In his dissertation, B. Smyth [3] classified the complex hypersurfaces of the simply connected complex space forms which are complete and Einsteinian.¹ In particular, he proved the following theorem:

Let M be a complete complex hypersurface of the complex projective space $P_{n+1}(C)$ of dimension n+1 for $n \ge 2$. If M is an Einstein space with respect to the metric induced from the Fubini-Study metric of $P_{n+1}(C)$, then M is either a complex hyperplane $P_n(C)$ or a complex quadric in $P_{n+1}(C)$.

The purpose of this note is to point out that the theorem of Smyth combined with the theorem of Riemann-Roch-Hirzebruch yields the following:

Let M be a complete complex hypersurface of $P_{n+1}(C)$. If M has constant scalar curvature with respect to the induced metric, then M is either a complex hyperplane $P_n(C)$ or a complex quadric in $P_{n+1}(C)$.

2. Kähler manifolds with constant scalar curvature

Let *M* be a Kähler manifold with metric $ds^2 = 2 \sum_{\alpha,\beta} g_{\alpha\beta} dz^{\alpha} d\bar{z}^{\beta}$ and the fundamental 2-form $\Phi = \frac{2}{i} \sum_{\alpha,\beta} g_{\alpha\beta} dz^{\alpha} d\bar{z}^{\beta}$. The first Chern class $c_1(M)$ of *M* is represented by the closed 2-form

$$\gamma_1 = \frac{1}{2\pi i} \sum_{\alpha,\beta} R_{\alpha\beta} dz^{\alpha} d\bar{z}^{\beta} ,$$

where $R_{\alpha\beta}$ denotes the Ricci tensor. We denote by $[\Phi]$ and $[\gamma_1]$ the cohomology classes represented by Φ and γ_1 , respectively, so that $c_1(M) = [\gamma_1]$.

If M is an Einstein space, then its scalar curvature $2\sum_{\alpha,\beta} g^{\alpha\beta} R_{\alpha\beta}$ is constant

and $[\gamma_1] = k[\Phi]$ for some constant k. Conversely, we have

Received September 18, 1967. Supported by NSF Grant GP-5798.

¹ In [1] Chern showed that even the corresponding local result is true. Takahashi [4] obtained a partial generalization of the result of Smyth by showing that if a hypersurface in a space of constant holomorphic sectional curvature has parallel Ricci tensor, then it is Einsteinian and symmetric.