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ALGEBRAIC DEFORMATION THEORY
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Introduction

Deformation theory dates back at least to Riemann's 1857 memoir
on abelian functions in which he studied manifolds of complex dimen-
sion one and calculated the number of parameters (called moduli) upon
which a deformation depends. Max Noether in his 1888 paper on the
moduli of algebraic surfaces was apparently the first to consider de-
formations of manifolds of higher dimension. The modern theory of
deformations of structures on manifolds was developed extensively in
papers by Frolicher-Nijenhuis [2], Kodaira-Spencer [14], [15], Kodaira-
Nirenberg-Spencer [13], and Spencer [22], [23]. The study of defor-
mations of algebraic structures was initiated by Gerstenhaber, who,
remarking that his methods extend to equationally defined algebraic
structures, devoted his work [5] to consideration of associative algebras
and graded and filtered rings.

Having the concept of deformation of algebraic structures (princi-
pally, associative algebras) and of analytic structures (principally, com-
plex analytic manifolds), we are led to seek a deformation theory of
mathematical structures in general. The present paper provides a step
towards the development of a generalized deformation theory by intro-
ducing a type of cohomology, which we call "deformation cohomology,"
in the deformation theory of algebraic structures. The deformation
cohomology is an algebraic analogue of the cohomology introduced by
Haefliger [10] in the deformation theory of structures on manifolds. The
latter is developed in greater detail in an unpublished communication
from A. Douady to D. C. Spencer. The relationship between the defor-
mation cohomology and the Hochschild cohomology, the latter reflect-
ing the infinitesimal structure, is expressed by an exact, commutative
diagram (see §§9-11).

A reasonable deformation theory for mathematical objects should
incorporate the notion of a "deformation cohomology" which in turn is
related to a cohomology reflecting the infinitesimal structure—the latter
cohomology will be called, for simplicity, "infinitesimal cohomology."
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