FOCAL SETS OF REGULAR MANIFOLDS M_{n-1} IN E_n

MARSTON MORSE

1. Introduction

The object of this paper is to prove the following theorem and give it a proper setting in differential topology.

Theorem 1.1. There exists a regular connected (n-1)-dimensional manifold M_{n-1} of class C^{∞} in a euclidean space E_n such that the focal points of M_{n-1} are everywhere dense in E_n .

In particular there exists a simple regular curve M_1 of class C^{∞} in E_2 whose centers of curvature are everywhere dense in E_2 . See §2.

The mainfold M_{n-1} of Theorem 1.1 is without any differentiable singularity in E_n and without self-intersection. However it cannot be compact by virtue of Theorem 1.2.

In Theorem 1.2 we refer to a subset of E_n of *J-content zero*. Given a positive constant e, such a set is characterized by the property that it is included in a finite number of n-rectangles whose total volume is less than e.

Theorem 1.2. Let M_{n-1} be a regular manifold of class C^m , m > 1, in E_n , and let \hat{M}_{n-1} and \hat{E}_n be, respectively, relatively compact open subsets of M_{n-1} and E_n .

Then the set of focal points of \hat{M}_{n-1} in \hat{E}_n has a J-content zero in E_n , implying that the set of focal points of \hat{M}_{n-1} is nowhere dense in E_n .

Note. It is not affirmed that the set of focal points of \hat{M}_{n-1} in E_n has J-content zero.

Theorem 1.2 admits an extension in which M_{n-1} is replaced by M_r where 0 < r < n. Both Theorem 1.2 and its extension are provable by methods used by the author in his colloquium lectures in treating focal points of extremals "transverse" to a differentiable manifold. We shall establish Theorem 1.2 by non-variational methods later in this section. The extension of Theorem 1.2 can also be established by non-variational methods and this will be done in an introduction to critical point theory in global analysis and differential topology now being written.

Theorem 1.2 implies, but is not implied by, the theorem that the set of focal points of the manifold M_{n-1} in Theorem 1.2 has a Lebesgue measure zero in E_n .

We shall recall some essential definitions.

Received March 14, 1967. Supported by the U.S. Army Research Office-Durham, DA-31-124-AROD-455.