J. DIFFERENTIAL GEOMETRY 53 (1999) 279-326

FUKAYA-FLOER HOMOLOGY OF $\Sigma \times S^1$ AND APPLICATIONS

VICENTE MUÑOZ

Abstract

We determine the Fukaya-Floer (co)homology groups of the three-manifold $Y = \Sigma \times \mathbb{S}^1$, where Σ is a Riemann surface of genus $g \geq 1$. These are of two kinds. For the 1-cycle $\mathbb{S}^1 \subset Y$, we compute the Fukaya-Floer cohomology $HFF^*(Y, \mathbb{S}^1)$ and its ring structure, which is a sort of deformation of the Floer cohomology $HF^*(Y)$. On the other hand, for 1-cycles $\delta \subset \Sigma \subset Y$, we determine the Fukaya-Floer homology $HFF_*(Y, \delta)$ and its $HF^*(Y)$ -module structure.

We give the following applications:

• We show that every four-manifold with $b^+ > 1$ is of finite type.

• Four-manifolds which arise as connected sums along surfaces of fourmanifolds with $b_1 = 0$ are of simple type and we give constraints on their basic classes.

• We find the invariants of the product of two Riemann surfaces both of genus greater than or equal to one.

1. Introduction

The structure of Donaldson invariants of 4-manifolds has been found out by Kronheimer and Mrowka [16] and Fintushel and Stern [8] for a large class of 4-manifolds (those of simple type with $b_1 = 0$, $b^+ > 1$) making use of universal relations coming from embedded surfaces. In order to analyse general 4-manifolds, we need to set up first the right framework for getting enough universal relations. It is the purpose of

Received June 16, 1998. The author was supported by a grant from Ministerio de Educación y Cultura of Spain.

 $Key\ words:$ Fukaya-Floer homology, Floer homology, 4-manifolds, Donaldson invariants, simple type.

¹⁹⁹¹ Mathematical Subject Classification. Primary: 58D27. Secondary: 57R57.