J. DIFFERENTIAL GEOMETRY
51 (1999) 97-147

THE WEYL UPPER BOUND ON THE DISCRETE SPECTRUM OF LOCALLY SYMMETRIC SPACES

LIZHEN JI

1. Introduction

1.1. Let G be a reductive Lie group with finitely many connected components, and Γ a cofinite volume discrete subgroup of G. Let $K \subset G$ be a maximal compact subgroup, and X = G/K be the associated symmetric space, which is the product of a symmetric space of noncompact type and a possible Euclidean space. Then $\Gamma \setminus X$ is a locally symmetric space of finite volume. For simplicity, we assume, unless otherwise specified, that there exists a reductive algebraic group \mathbf{G} defined over \mathbb{Q} satisfying the conditions in [18, p. 1] such that $G = \mathbf{G}(\mathbb{R})$, and $\Gamma \subset \mathbf{G}(\mathbb{Q})$ is an arithmetic subgroup.

Any finite dimensional unitary representation σ of K defines a homogeneous bundle \tilde{E}_{σ} on X and hence a locally homogeneous bundle E_{σ} on $\Gamma \setminus X$. The bundle E_{σ} admits a locally invariant connection ∇ which is the push forward of the invariant connection on the homogeneous bundle \tilde{E}_{σ} . The connection ∇ defines a quadratic form D on sections of E_{σ} : For any $f \in C_0^{\infty}(\Gamma \setminus X, \sigma)$,

$$D(f) = \int_{\Gamma \setminus X} |\nabla f(x)|^2 dx.$$

This quadratic form D defines an elliptic operator Δ on $L^2(\Gamma \setminus X, \sigma)$, called the Laplace operator, where $L^2(\Gamma \setminus X, \sigma)$ denotes the space of L^2 sections of E_{σ} . If σ is irreducible, Δ is equal to a shift of the restriction of

Received October 8, 1996, and, in revised form, August 7, 1998. Author was partially supported by NSF postdoctoral fellowship 9407427 and NSF grant DMS-9704434.