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1. Introduction 

1.1. Weil-Petersson convexity and classical Teichmuller 
space. Suppose that we have a smooth compact Riemanninan main-
fold M n of dimension n with a metric g, and a compact surface N2 with 
a hyperbolic metric G. We assume that both M and N have no bound­
ary. Let {x1g be a local coordinate for M n, and {yag a local coordinate 
for N2. 

The following statements follow from the results of Eells, Sampson 
[3] and Hartman [8] as well as Al'bers [1]. 

Theorem. Given a continuous map 4> '• M n —> N2, there is a 
smooth harmonic map u : M n —> N2 homotopic to (f>, and u is unique 
in the homotopy class, unless the image of the map is a point or a closed 
geodesic in N. 

Eells and Lemiare [4] have shown that as long as harmonic maps exist 
and are uniquely determined, when the image metric is varied smoothly 
along a curve G t (with G° = G), the harmonic maps 
u t : (M, g) —> (N, G t) vary smoothly without changing homotopy type 
in the parameter t for sufficiently small t. (In order to ensure the ex­
istence and uniqueness of u t for all t, we require the negativity of the 
sectional curvature of G t.Z In particular, the energy functional; 
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