J. DIFFERENTIAL GEOMETRY 51 (1999) 35-96

WEIL-PETERSON CONVEXITY OF THE ENERGY FUNCTIONAL ON CLASSICAL AND UNIVERSAL TEICHMÜLLER SPACES

SUMIO YAMADA

1. Introduction

1.1. Weil-Petersson convexity and classical Teichmüller space. Suppose that we have a smooth compact Riemannian mainfold M^n of dimension n with a metric g, and a compact surface N^2 with a hyperbolic metric G. We assume that both M and N have no boundary. Let $\{x^i\}$ be a local coordinate for M^n , and $\{y^\alpha\}$ a local coordinate for N^2 .

The following statements follow from the results of Eells, Sampson [3] and Hartman [8] as well as Al'bers [1].

Theorem. Given a continuous map $\phi : M^n \to N^2$, there is a smooth harmonic map $u : M^n \to N^2$ homotopic to ϕ , and u is unique in the homotopy class, unless the image of the map is a point or a closed geodesic in N.

Eells and Lemiare [4] have shown that as long as harmonic maps exist and are uniquely determined, when the image metric is varied smoothly along a curve G^t (with $G^0 = G$), the harmonic maps $u_t : (M,g) \to (N,G^t)$ vary smoothly without changing homotopy type in the parameter t for sufficiently small t. (In order to ensure the existence and uniqueness of u_t for all t, we require the negativity of the sectional curvature of G^t .) In particular, the energy functional;

$$\mathcal{E}(t) = \frac{1}{2} \int_{M^n} G^t_{\alpha\beta}(u_t) g^{ij} \frac{\partial u^{\alpha}_t}{\partial x^i} \frac{\partial u^{\beta}_t}{\partial x^j} d\mu_g$$

Received March 10, 1998. The author was partially supported by NSF Grant DMS 9701303.