THE CALABI-YAU EQUATION ON ALMOST-KÄHLER FOUR-MANIFOLDS

Ben Weinkove

Abstract

Let (M, ω) be a compact symplectic 4 -manifold with a compatible almost complex structure J. The problem of finding a J-compatible symplectic form with prescribed volume form is an almost-Kähler analogue of Yau's theorem and is connected to a programme in symplectic topology proposed by Donaldson. We call the corresponding equation for the symplectic form the CalabiYau equation. Solutions are unique in their cohomology class. It is shown in this paper that a solution to this equation exists if the Nijenhuis tensor is small in a certain sense. Without this assumption, it is shown that the problem of existence can be reduced to obtaining a C^{0} bound on a scalar potential function.

1. Introduction

In 1954 Calabi [Ca] conjectured that any representative of the first Chern class of a compact Kähler manifold (M, ω) can be written as the Ricci curvature of a Kähler metric ω^{\prime} cohomologous to ω. He showed that any such metrics are unique. Yau [Ya] famously solved Calabi's conjecture around twenty years later. This result, and the immediate corollary that any Kähler manifold with $c_{1}(M)=0$ admits a Ricci-flat metric, have had many applications in both mathematics and theoretical physics.

Yau's theorem is equivalent to finding a Kähler metric in a given Kähler class with prescribed volume form. By the $\partial \bar{\partial}$-Lemma this amounts to solving the complex Monge-Ampère equation

$$
\begin{equation*}
(\omega+\sqrt{-1} \partial \bar{\partial} \phi)^{n}=e^{F} \omega^{n} \tag{1.1}
\end{equation*}
$$

for smooth real ϕ with $\omega+\sqrt{-1} \partial \bar{\partial} \phi>0$, where $n=\operatorname{dim}_{\mathbb{C}} M$ and F is any smooth function with $\int_{M} e^{F} \omega^{n}=\int_{M} \omega^{n}$. Yau solved this equation by considering the family of equations obtained by replacing F by $t F+c_{t}$ for some constant c_{t}, for $t \in[0,1]$ and using the continuity method. This

[^0]
[^0]: The author is supported in part by National Science Foundation grant DMS-0504285. This work was carried out while the author was visiting Imperial College, London on a Royal Society Research Assistantship.

 Received 05/09/2006.

