GRAFTING, PRUNING, AND THE ANTIPODAL MAP ON MEASURED LAMINATIONS

DAVID DUMAS

Abstract

Grafting a measured lamination on a hyperbolic surface defines a self-map of Teichmüller space, which is a homeomorphism by a result of Scannell and Wolf. In this paper we study the large-scale behavior of pruning, which is the inverse of grafting.

Specifically, for each conformal structure $X \in \mathcal{T}(S)$, pruning X gives a map $\mathscr{ML}(S) \to \mathscr{T}(S)$. We show that this map extends to the Thurston compactification of $\mathscr{T}(S)$, and that its boundary values are the natural *antipodal involution* relative to X on the space of projective measured laminations.

We use this result to study Thurston's grafting coordinates on the space of \mathbb{CP}^1 structures on S. For each $X \in \mathcal{T}(S)$, we show that the boundary of the space P(X) of \mathbb{CP}^1 structures on X in the compactification of the grafting coordinates is the graph $\Gamma(i_X)$ of the antipodal involution $i_X : \mathbb{PML}(S) \to \mathbb{PML}(S)$.

1. Introduction

Grafting is a procedure that begins with a hyperbolic structure $Y \in \mathcal{T}(S)$ in the Teichmüller space of a surface S of negative Euler characteristic and a measured geodesic lamination $\lambda \in \mathscr{ML}(S)$. By replacing λ with a thickened version that carries a natural Euclidean metric, a new conformal structure $X = \operatorname{gr}_{\lambda} Y \in \mathcal{T}(S)$, the grafting of Y along λ , is obtained.

Scannell and Wolf have shown that for each lamination $\lambda \in \mathcal{ML}(S)$, the conformal grafting map $\operatorname{gr}_{\lambda}: \mathcal{T}(S) \to \mathcal{T}(S)$ is a homeomorphism, and thus there is an inverse or pruning map $\operatorname{pr}_{\lambda}: \mathcal{T}(S) \to \mathcal{T}(S)$ [SW].

In this paper we describe the large-scale behavior of pruning $X \in \mathcal{T}(S)$ in terms of the conformal geometry of X. This description is based on the map

$$\Lambda: Q(X) \to \mathscr{ML}(S)$$

which records the measured lamination equivalent to the horizontal foliation of a holomorphic quadratic differential. Hubbard and Masur

The author was partially supported by an NSF Postdoctoral Research Fellowship. Received 11/18/2004.