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Abstract
We briefly describe recent results about higher Bruhat and Tamari orders, the associated simplex equations 

and generalizations (polygon equations) of the pentagon equation, and the appearance of these orders in soliton 
interactions.
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Introduction
In this letter, we sketch some of our recent results [1] at the 

interface between integrable systems and combinatorics. This includes 
a revision of the relation between higher Bruhat orders and simplex 
equations [2,3], a decomposition of higher Bruhat orders, the resulting 
Tamari orders (expected to be equivalent to higher Stasheff -Tamari 
orders), and a new family of equations associated with the latter. We 
finally recall the occurrence of higher Bruhat and Tamari orders in a 
“tropical limit” of solitons of the famous Kadomtsev-Petviashvili (KP) 
equation [4,5].

Higher Bruhat Orders and Simplex Equations

Let [N] = {1, 2, …, N} and [ ] 
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P K . Let A(N, n) be the set of admissible linear orders of 
[ ] 
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.  An equivalence relation is defined on A(N, n) by setting ρ 

~ρ'  if ρ and ρ' only differ by exchange of two neighboring elements, 
not both contained in some packet. The higher Bruhat order B(N, n) 
is A(N, n)/~ supplied with the partial order determined by inversions 

 ( ) ( )
 

P K P K  of lexicographically ordered packets of neighboring 
elements. There is a natural correspondence between the elements of 
A(N, n + 1) and the maximal chains of B(N, n). The Bruhat order B(3, 1) 
consists of the two maximal chains
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where ij stands for {i, j} and here indicates the inversion of the packet of 
it in the respective linear order. A set-theoretical realization 

, ( , , )  ,  :  × × × → ×  i i j k ij i j j ii i j k ij        

(or a realization using vector spaces and tensor products) leads to the 
Yang-Baxter (YB) equation

23, 13, 12, 12, 13, 23,=     12 23 12 23 12 23

The boldface position indices are read off from the above chains. 
They specify on which pair of sets in the threefold direct product the 
map ij  acts. In terms of :ˆ =ij ij   , where  is the transposition, the 

YB equation has the more familiar form 23, 13, 12, 12, 13, 23,
ˆ ˆ ˆ ˆ ˆ ˆ=     12 13 23 23 13 12 .

For any N>1, the higher Bruhat order B(N+1, N-1) consists of two 
maximal chains, so that it determines an equation in the same way 
as in the above example, where N=2. The associated equation is the 
N-simplex equation. The 3-simplex equation is thus a realization of 
B(4, 2). The two maximal chains of the latter poset are resolved below 
into elements of A(4, 2), and a linear order is now more conveniently 
displayed as a column. The coloring is referred to later on.
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From the above chains we read off the 3-simplex equation

234, 134, 56 23 124, 123, 123, 124, 134, 234,=             123 345 345 123 34 34 456 234 45 12 234 456

for maps     : ,× × → × × < <ijk ij ik jk jk ik ij i j k      . An equivalence 
(~) is realized by a transposition map ab  (acting at positions a and b). 
In terms of :   ˆ  :  = × × → × ×      ijk ijk jk ik ij jk ik ij13  the 3-simplex equation 
takes the form 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1, 2, 3, 4, 4, 3, 2, 1,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ=

123 145 246 356 356 246 145 123
       

using complementary notation: 1̂ {2,3,4} 234= = etc. This is also known as 
tetrahedron equation, or Zamolodchikov equation. It appeared originally 
as a factorization condition for the S-matrix in a (2+1)-dimensional 
theory of “straight strings”, and in a related three-dimensional exactly 
solvable lattice model (see, e.g., [6]).

The six linear orders constituting A(3, 1), viewed as maximal 
chains, build B(3, 0). It forms a cube, on which the structure of the 
YB equation is often visualized. There is a counterpart for any simplex 
equation. For example, the linear orders constituting A(4, 2) can be 
viewed as maximal chains of B(4, 1), which forms a polyhedron called 

   


