Some Results on Additive Number Theory III

Minoru TANAKA

Gakushuin University

§ 1. The main theorem.

Let k be an integer>1 and l be a positive integer. Let $\{P_{ij}: i=1, \dots, k; j=1, \dots, l\}$ be a given family of sets, each consisting of prime numbers, subject to the following conditions:

- (C₁) For each $i=1, \dots, k$, the sets $P_{ij}(j=1, \dots, l)$ are pairwise disjoint;
 - (C₂) As $x \to \infty$,

$$\sum_{p \leq x, p \in P_{ij}} \frac{1}{p} = \lambda_{ij} \log \log x + o \left(\sqrt{\log \log x} \right)$$

with positive constants λ_{ij} for $i=1, \dots, k; j=1, \dots, l$.

The sets P_{ij} with distinct i's need not be disjoint, and $P_{i1} \cup \cdots \cup P_{il}$ may not contain all primes.

Throughout the paper, without repeated comment, the double subscripts ij will always run through the kl pairs of integers $i=1, \dots, k$; $j=1, \dots, l$.

Let $\omega_{ij}(n)$ denote the number of distinct prime factors of a positive integer n, which belong to the set P_{ij} :

$$\omega_{ij}(n) = \sum_{p \mid n, p \in P_{ij}} 1$$
.

THEOREM 1. Let E be a Jordan-measurable set, bounded or unbounded in the space R^{kl} of kl dimensions. For sufficiently large integer N, let A(N; E) denote the number of representations of N as the sum of k positive integers: $N = n_1 + \cdots + n_k$ such that, if we put

$$x_{ij} = \frac{\omega_{ij}(n_i) - \lambda_{ij} \log \log N}{\sqrt{\lambda_{ij} \log \log N}}$$
,

the point $(x_{11}, \dots, x_{1l}, \dots, x_{k1}, \dots, x_{kl})$ belongs to the set E. Then, as $N \rightarrow \infty$, we have

Received July 18, 1978