A Note on the Pell Equation

Hideo WADA

Sophia University

For solving the Pell equation $|x^2 - my^2| = 1$, we usually use the continued fraction expansion of \sqrt{m} . We will give here a new geometrical interpretation of the continued fraction expansion, and apply it to solve the Pell equation. Theorem 1 makes the continued fraction expansion of \sqrt{m} more meaningful. Theorem 2 gives the existence of the solution. The proof is simpler and shorter than the usual one.

 $\S 1.$ Let m be a positive integer which is not a square. Then the Pell equation

(1)
$$|x^2-my^2|=1$$
, $(x, y \in Z)$

can be written as

$$|(x+\sqrt{m}y)(x-\sqrt{m}y)|=1$$
.

Put $\alpha=x+\sqrt{m}y$, $\alpha'=x-\sqrt{m}y=$ the conjugate of α . Then (2) can be written as $|\alpha\alpha'|=1$. Put $\alpha_0=1$, $\alpha_{-1}=\sqrt{m}$, $L=\{x\alpha_0+y\alpha_{-1}|x,y\in Z\}=\{x+\sqrt{m}y\,|\,x,\,y\in Z\}$, and in the X-Y plane, $\bar{\alpha}_0=(1,1)$, $\bar{\alpha}_{-1}=(\sqrt{m},-\sqrt{m})$, $\bar{L}=\{x\bar{\alpha}_0+y\bar{\alpha}_{-1}|x,\,y\in Z\}=\{(x+\sqrt{m}y,\,x-\sqrt{m}y)\,|\,x,\,y\in Z\}=\{(\alpha,\,\alpha')\,|\,\alpha\in L\}$.

LEMMA 1. Let $\vec{\beta} = (\beta, \beta')$, $\vec{\gamma} = (\gamma, \gamma')$ be generators of \vec{L} such that $0 < \beta$, $0 < \gamma$, $\beta' \gamma' < 0$, $|\gamma'| < |\beta'|$. Then the smallest number $\delta \in L$ such that $\gamma < \delta$, $|\delta'| < |\gamma'|$ is $\beta + [-\beta'/\gamma'] \gamma$, $([-\beta'/\gamma']$ means the integer part of $-\beta'/\gamma'$). In this case, $\vec{\gamma}$, $\vec{\delta} = (\delta, \delta')$ are generators of \vec{L} such that $0 < \gamma$, $0 < \delta$, $\gamma' \delta' < 0$, $|\delta'| < |\gamma'|$.

PROOF. We may assume $0<\gamma'<-\beta'$ without any loss of generality. Put $\delta=x\gamma+y\beta$. If $x\leq 0$ and $y\leq 0$, then $\delta\leq 0$. If x>0 and $y\leq 0$, then $\delta'=x\gamma'+y\beta'\geq \gamma'$. Therefore y must be greater than zero. When $y\geq 1$, then from the condition $|\delta'|<|\gamma'|$, we have $-\gamma'< x\gamma'+y\beta'<\gamma'$ and $-\gamma'-y\beta'< x\gamma'<\gamma'-y\beta'$. Hence $-1-\beta'/\gamma'\leq -1-y\beta'/\gamma'< x<1-y\beta'/\gamma'$. From

Received March 3, 1978