Токуо J. Матн. Vol. 2, No. 1, 1979

On the Duality Mapping of l^{∞}

Ichiro HADA, Kazuo HASHIMOTO and Shinnosuke OHARU

Waseda University

This paper is concerned with a measure theoretic characterization of the duality mapping of the space l^{∞} of bounded sequences of real numbers. The duality mapping of a Banach space X is a possibly multi-valued mapping F from X into its dual space X^* which assigns to each $u \in X$ a subset of X^* defined by

$$F(u) = \{f \in X^*: \langle u, f \rangle = ||u||^2 = ||f||^2\},$$

where $\langle u, f \rangle$ stands for the value of $f \in X^*$ at the point $u \in X$. The mapping F is well-defined on all of X by means of the Hahn-Banach theorem, and it is well-known ([1], [4], [9]) that F(u) is weakly-star compact and convex for each $u \in X$; and F is weakly-star demi-closed in the sense that if u_n converges strongly to u in X, $f_n \in F(u_n)$, and f is a weak-star cluster point of the sequence $\{f_n: n \uparrow \infty\}$, then $f \in F(u)$. The space l^{∞} is one of the typical non-reflexive classical Banach spaces in the sense that it is a Banach lattice with respect to the usual ordering and every separable Banach space can be embedded isometrically and isomorphically in l^{∞} . Accordingly, the duality mapping of l^{∞} is a prototype of the duality mappings of general non-reflexive Banach spaces.

Here we investigate the structure and topological properties of the duality mapping F of l^{∞} . This problem was arised both in the study of generalized derivatives of strongly absolutely continuous functions which take values in non-reflexive Banach spaces and in the investigation of nonlinear dissipative operators. The results obtained in this paper will suggest not only typical properties possessed by the duality mapping of a general nonreflexive Banach space but also counterexamples concerning generalized derivatives and nonlinear dissipative operators.

Our work is mainly devoted to two problems: The first aim is to investigate the structure of the values F(u), $u \in l^{\infty}$; and the second

Received October 11, 1978