Токуо Ј. Матн. Vol. 3, No. 2, 1980

The Remainder Term in the Local Limit Theorem for Independent Random Variables

Makoto MAEJIMA

Keio University

Introduction

Let $\{X_k, k=1, 2, \dots\}$ be a sequence of independent random variables with $EX_k=0$, $EX_k^2=\sigma_k^2<\infty$ ($\sigma_k\geq 0$) and with distribution function $F_k(x)$, and suppose that each of X_k has a bounded density function $p_k(x)$. Furthermore, we suppose that some of σ_k^2 are not zero, in particular, we assume $\sigma_1^2>0$ without loss of generality. Write $s_n^2=\sum_{k=1}^n\sigma_k^2$, $Z_n=s_n^{-1}\sum_{k=1}^nX_k$, $f_k(t)=Ee^{itX_k}$, $\bar{f}_n(t)=Ee^{itZ_n}$, $R_k(z)=\int_{|u|>z}u^2dF_k(u)$ and $Q_k(z)=\left|\int_{|u|\leq z}u^3dF_k(u)\right|$. Moreover, let $\bar{p}_n(x)$ be the density function of Z_n and $\phi(x)$ be the standard normal density function.

Let us denote two classes of functions g(z) defined for all z as follows:

$$G = \{g(z) | g(z) \text{ is even on } (-\infty, \infty) \text{ and positive on } (0, \infty), \text{ and}$$

further $z/g(z)$ is non-decreasing on $(0, \infty)\}$

and

$$G_0 = \{g(z) | g(z) \in G, \text{ and in addition, } z^{\alpha}/g(z) \text{ is non-decreasing}$$

on $(0, \infty)$ for some α with $0 < \alpha < 1\}$.

For $g(z) \in G$, write

$$egin{aligned} &\lambda_k(g)\!=\!\sup_{z>0}\,g(z)R_k(z)\;, &\mu_k(g)\!=\!\sup_{z>0}rac{g(z)}{z}Q_k(z)\;, \ &
ho_k(g)\!=\!\lambda_k(g)\!+\!\mu_k(g) \end{aligned}$$

and

$$T_n = \frac{\sum_{k=1}^n \rho_k(g)}{s_n^2 g(s_n)}$$
.

Received October 13, 1978