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Introduction

In dealing with the generalized harmonic analysis of functions of
several variables, a problem of basic importance would be to study the
so-called Wiener formula which states the equivalence of

$\lim_{s,\tau\rightarrow\infty}\frac{1}{4ST}\int_{-T}^{T}\int_{-S}^{S}|f(s, t)|^{2}dsdt$

and

$\lim_{e,\eta\rightarrow 0}\frac{1}{\pi^{2}\epsilon\eta}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|f(s, t)|^{2}\frac{\sin^{2}\epsilon s\sin^{2}\eta t}{s^{2}t^{2}}dsdt$ .

Different from the case of functions of one variable, one should
keep in mind that there are several kinds of methods about limit pro-
cesses and this makes the problem more involved than that of one vari-
able. In this paper we restrict ourselves to the case of functions of
two variables.

(1) The method of N. Wiener-A.C. Berry [9]. They assumed that
the following limit

(0.1) $\lim_{R\rightarrow\infty}\frac{1}{\pi R^{2}}\int_{0}^{2\pi}\int_{0}^{R}|f$($r$ cos $\theta,$ $r$ sin $\theta$ ) $|^{2}rdrd\theta$

exists and developed the spectral analysis.
(2) The method of T. Kawata [1]. He assumed that the following

limit

(0.2) $\lim_{T.T\rightarrow\infty}\frac{1}{4TT’}\int_{-T}^{T^{\prime}},\int_{-T}^{T}|f(s, t)|^{2}dsdt$

exists and has the same limit no matter how $T$ and $T^{\prime}$ tend to infinity
and, using the Wiener formula, derived some type of law of large num-
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