Tokyo J. Math. Vol. 1, No. 1, 1978

On the Values of Eisenstein Series

Dedicated to Professor Yukiyoshi Kawada on his 60th Birthday

Koji KATAYAMA

Tsuda College

Introduction.

The main purpose of the present paper is to settle the theorem of v. Staudt-Clausen for 'normalized Hurwitz-Herglotz function' $H_s(\tau; u, v)$ in the singular case (i.e. the case τ is imaginary quadratic and $u, v \in Q$):

$$H_s(\tau; u, v) = \frac{s!}{12\sqrt{\Delta^s}} \sum_{(m,n)\in \mathbb{Z}^2} \frac{e^{2\pi i (mu+nv)}}{(m\omega_1 + n\omega_2)^s}$$

where $\tau = \omega_2/\omega_1$ and $\Delta = \Delta(\omega_1, \omega_2)$ is the usual discriminant function for Weierstrass' \mathscr{D} -function with periods ω_1, ω_2 .

The result is, roughly speaking, that the 'theorem of v. Staudt-Clausen' is of the same type as Herglotz except for an algebraic additive term whose denominator is divisible by at most prime factors of a finite number of integers given in the respective case.

Here note that in $Q(\sqrt{-1})$, for example, $H_s(\sqrt{-1}; u, v)$ does not vanish and has an additive contribution mentioned above to v. Staudt-Clausen even for $s \neq 0 \pmod{4}$, while $H_s(\sqrt{-1}; 0, 0)$, the Hurwitz-Herglotz number, vanishes for $s \neq 0 \pmod{4}$.

Further it should be noted that as a byproduct of our theory, an interesting identity is obtained from modular transformation formula for function W_{λ} (see 2.2).

In the final part, we add some comment on Ramanujan's formula for series of Lambert type.

§ 1. Kronecker's function K.

1.1. Let w, τ be complex variables and Im τ be positive. We define

(1.1)
$$\vartheta_1(w, \tau) = \sum_{n=-\infty}^{\infty} e^{\pi i (n+1/2)^2 \tau + 2\pi i (n+1/2)(w-1/2)}$$

Received January 14, 1978