On the Partition Problem in an Algebraic Number Field

Takayoshi MITSUI

Gakushuin University

Let p(n) be the number of the partitions of n, then the generating function of p(n) is given by

$$f(x) = \prod_{n=1}^{\infty} (1-x^n)^{-1} = 1 + \sum_{n=1}^{\infty} p(n) x^n$$
 (|x|<1).

In 1917, Hardy and Ramanujan [1] proved the asymptotic formula for p(n):

$$p(n) \sim \frac{1}{4\sqrt{3} n} \exp\left(\pi \sqrt{\frac{2n}{3}}\right) \qquad (n \to \infty).$$

In 1934, Wright [11] studied the partition problem of n into k-th powers of integers. In this case, the generating function is

$$f_k(x) = \prod_{n=1}^{\infty} (1 - x^{nk})^{-1} = 1 + \sum_{n=1}^{\infty} p_k(n) x^n$$
 (|x|<1)

and Wright obtained the asymptotic formula for $p_k(n)$:

$$p_{\scriptscriptstyle k}(n)\!\sim\!rac{A_{\scriptscriptstyle k}k^{\scriptscriptstyle 1/2}n^{-\scriptscriptstyle 3/2+\scriptscriptstyle 1/(k+1)}}{(2\pi)^{\scriptscriptstyle (k+1)/2}(k\!+\!1)^{\scriptscriptstyle 3/2}}{
m exp}\left(A_{\scriptscriptstyle k}n^{\scriptscriptstyle 1/(1+k)}
ight)$$
 ,

where

$$A_k = (k+1) \left\{ \frac{1}{k} \Gamma \left(1 + \frac{1}{k} \right) \zeta \left(1 + \frac{1}{k} \right) \right\}^{k/(k+1)}$$
.

In 1950, Rademacher [7] suggested the problem of generalizing the partition function to algebraic number field. Three years later, in 1953, Meinardus [4] succeeded in obtaining the asymptotic formula for the partition function in a real quadratic field: Let K be a real quadratic field and define the infinite product

$$f(au, au') = \prod_{
u} (1 - e^{-
u au -
u' au'})^{-1}$$
,

where the product is taken over all totally positive integers ν of K, ν' Received March 18, 1978