Tokyo J. Math. Vol. 2, No. 2, 1979

The Microlocal Structure of Weighted Homogeneous Polynomials Associated with Coxeter Systems I

Tamaki YANO and Jiro SEKIGUCHI

Saitama University and Tokyo Metropolitan University

Introduction

Let E be an l-dimensional Euclidean space with an orthonormal basis $\{e_i\}$ and E^* its dual with the dual basis $\{\xi_i\}$. Let, further, W be a finite group of GL(E) generated by reflections. Such a group is completely classified and forms a Coxeter system (W, S) for an appropriate set S of generators [1]. Let R be the subalgebra of the symmetric algebra $S(E^*)$ whose elements are invariant under the action of W. As is known, there exist algebraically independent homogeneous elements x_1, \dots, x_l of R such that $R = R[x_1, \dots, x_l]$. Let $D(\xi)$ be the product of linear functions defining the hyperplanes of reflections of W. Then $D(\xi)^2$ is represented as a polynomial of x_1, \dots, x_l . We denote it by $f_W(x)$ and call it the generalized discriminant in this paper.

Let us consider the space $X = (E^*/W)^c$, the complexification of the quotient space of E^* by W, whose coordinate ring is $C \otimes R$. Then

$$m_{ij}(x) = \frac{1}{2} \sum_{k=1}^{l} \frac{\partial x_i}{\partial \xi_k} \frac{\partial x_j}{\partial \xi_k} \qquad (1 \leq i, j \leq l)$$

belong to R and the vector fields

$$X_i = \sum_{j=1}^{l} m_{ij}(x) \frac{\partial}{\partial x_j} \qquad (1 \le i \le l)$$

leave $f(x) = f_w(x)$ invariant. More precisely, we have

$$X_i f(x) = c_i(x) f(x)$$

with certain polynomials $c_i(x) \in R$. Furthermore, X_1, \dots, X_l form a free basis of the Lie algebra of vector fields leaving the set $\{x; f(x)=0\}$ invariant ([7]).

In this paper, we shall study the microlocal structure of the \mathscr{D}_X -Module Received November 22, 1978