The Cauchy Problem for Weakly Hyperbolic Equations (II); Infinite Degenerate Case

Hitoshi URYU

Waseda University

Introduction

In this paper we shall deal with well-posedness of the Cauchy problem for some weakly hyperbolic operators with involutive and non-involutive multiple characteristics. For the second order equations, Oleinik [4] obtained a sufficient condition for well-posedness. Menikoff [1] extended Oleinik's results to the equations of higher order, and Ohya [3] improved and simplified Menifoff's proof. In a previous paper [5], we considered weakly hyperbolic operators whose characteristic roots come across one another with finite order at $t=0$.

Recently Nishitani [2] has proved well-posedness of the Cauchy problem for a hyperbolic operator with characteristic roots coming into double at $t=0$ in contact with each other of infinite order. In this article we shall treat the case where the characteristic roots may have $m(\geqq 2)$ multiplicities at $t=0$ in contact with one another of infinite order.

Now our concern is the following operator P which is a partial differential operator of the form:

$$
P=D_{t}^{m}+\sum_{\substack{ |\mid \begin{subarray}{c}{\mid+j \\
j \leq m \leq m} }}\end{subarray}} a_{\alpha, j}(x, t) D_{x}^{\alpha} D_{t}^{j}
$$

where each coefficient $a_{\alpha, j}(x, t)$ belongs to $\mathscr{B}\left((0, T) \times \boldsymbol{R}^{n}\right)$. Let $\lambda_{j}(x, t, \xi)$, $j=1, \cdots, m$, be the characteristic roots of P. If all the $\lambda_{j}(x, t, \xi)$ are real valued functions in $\mathscr{B}\left((0, T), S^{1}\right)$ for some $T>0, P$ is said to be a weakly hyperbolic operator. We consider only such operators throughout the paper.

We say that a weakly hyperbolic operator P has involutive characteristic roots if for any $i, j(1 \leqq i, j \leqq m)$, there exist pseudo-differential operators $A_{i, j}, B_{i, j}$ and $C_{i, j} \in \mathscr{B}\left((0, T), S^{0}\right)$ such that

