# Analytic Functionals on the Lie Sphere 

Mitsuo MORIMOTO

Sophia University

## Introduction

Suppose $S^{1}=\{z \in C ;|z|=1\}$ is the unit circle. Let us denote by $L^{2}\left(S^{1}\right)$ the Hilbert space of square integrable functions on $S^{1}$ equipped with the inner product $(f, g)_{L^{2}\left(S^{1}\right)}=(f, \bar{g})_{S^{1}}$, where $(,)_{S^{1}}$ is the bilinear form defined as follows:

$$
\begin{equation*}
(f, g)_{S_{1}^{1}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) g\left(e^{i \theta}\right) d \theta \tag{0.1}
\end{equation*}
$$

Let us denote by $\mathscr{\mathscr { O }}^{(m)}\left(S^{1}\right)$ the one dimensional subspace of $L^{2}\left(S^{1}\right)$ spanned by the exponential function $e^{i m \theta}$. Then we have the direct sum decomposition:

$$
\begin{equation*}
L^{2}\left(S^{1}\right)=\underset{m \in \mathbb{Z}}{\oplus} \mathscr{H}^{(m)}\left(S^{1}\right) \tag{0.2}
\end{equation*}
$$

and the orthogonal projection of $L^{2}\left(S^{1}\right)$ onto $\mathscr{C}^{(m)}\left(S^{1}\right)$ is given by

$$
\begin{equation*}
f\left(e^{i \theta}\right) \longmapsto c_{m} e^{e^{i m \theta}}, \tag{0.3}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{-i m \theta} d \theta \tag{0.4}
\end{equation*}
$$

is the $m$-th Fourier coefficient of $f$.
More generally, suppose $S^{n-1}$ is the $n-1$ dimensional unit sphere. $d \Omega_{n}$ denotes the invariant measure on $S^{n-1}$ and $\Omega_{n}$ is the volume of $S^{n-1}$. Denote by $L^{2}\left(S^{n-1}\right)$ the Hilbert space of square integrable functions on $S^{n-1}$ equipped with the inner product $(f, g)_{L^{2}\left(S^{n-1}\right)}=(f, \bar{g})_{s^{n-1}}$, where $(,)_{s^{n-1}}$ is the bilinear form defined as follows:

$$
\begin{equation*}
(f, g)_{s^{n-1}}=\frac{1}{\Omega_{n}} \int_{s^{n-1}} f(\omega) g(\omega) d \Omega_{n}(\omega) . \tag{0.5}
\end{equation*}
$$

If we denote by $\mathscr{H}^{k}\left(S^{n-1}\right)$ the space of spherical harmonics of degree $k$,

[^0]
[^0]:    Received November 30, 1979

