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Introduction

The study of chaos is very important not only from a mathematical
but also from a physical and biological point of view. One parameter
family of continuous maps, from interval to itself, is an especially im-
portant example and recently the study of them has made great progress.

In this article we will examine unimodal transformations. Our aim
is to extend Sarkovskii’s result ([6], [7]) and to calculate the topological
entropy of the transformations. A continuous map from interval $I=$

$[a, b](-\infty<a<b<\infty)$ to itself will be called unimodal if there exists a
unique point $c\in(a, b)$ such that

i) $f(c)>f(x)$ for any $xe[a, b]x\neq c$

ii) $f$ is monotone increasing in $[a, c]$

and
iii) $f$ is monotone decreasing in $[c, b]$ .

Here we only treat those maps which satisfy
i) $I=[0,1]$

ii) $f(1)=0$

iii) $f(c)=1$

and
iv) $0<f(0)<1$ .

In general, all unimodal transformations except some trivial ones can be
reduced to this case. If $f$ is linear in both $[a, c]$ and $[c, b],$ $f$ is called a
unimodal linear transformation. Concerning unimodal linear transfor-
mations, see [1].

\S 1. Notations and preliminaries.

Let $\Theta$ be an aggregate of all the formal symbols
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