On Existence of Infinitely Many Prime Divisors in a Given Set

Hiroshi KOBAYASHI

Ebina Highschool
(Communicated by K. Katayama)

There are some problems in number theory which is concerned with existence of infinitely many primes in a given set, e.g., Dirichlet's theorem on arithmetic progressions or existence of Fermat primes.

We consider a rather loose problem which is concerned with existence of infinitely many prime divisors of elements of a given set.

Let M be a set of rational integers. We call M of type I if the set of prime divisors of M is an infinite set. Otherwise M is said to be of type II.

We assert that if M is an infinite set of type II, and a is a nonzero rational integer, the set $M+a=\{t+a \mid t \in M\}$ is of type I .

We need the following lemma which is known as Siegel's theorem. (cf. (1) p. 127)

Lemma. Let K be a field of finite type over \boldsymbol{Q}, and R a subring of K of finite type over Z. Let C be a projective non-singular curve of genus $\geqq 1$ defined over K, and let φ be a non-constant function in $K(C)$. Then there is only a finite number of points $P \in C_{k}$ which are not poles of φ and satisfies $\varphi(P) \in R$.

Theorem. Let M be a set of rational integers of type II, a be a non-zero rational integer, and m be a rational integer not less than 3. Let $\left(b_{t}\right)_{\epsilon \in M}$ be a family of rational integers with index set M. Set $N=$ $\left\{a+b_{t}^{m} \cdot t \mid t \in M\right\}$. If N is an infinite set, then N is of type I.

Proof. If the set of prime divisors of M is $\left\{p_{1}, \cdots, p_{n}\right\}, m$-th roots of all elements of M are contained in the ring $R=\boldsymbol{Z}\left[\zeta, p_{1}^{1 / m}, \cdots, p_{n}^{1 / m}\right]$ (where $\zeta=\exp ((\pi / m) i))$ which is of finite type over Z, and is a subring of a finite extention field K of \boldsymbol{Q}. Put

[^0]
[^0]: Received December 19, 1980

