TOKYO J. MATH. Vol. 4, No. 2, 1981

The Structure of Endomorphism Algebras*

Hideki SAWADA

Sophia University

Introduction

Let k be a field and A be an algebra over k with a unity element 1. We denote by M(A) the category of left A-modules. Let Y be an A-module and $E = \operatorname{End}_A(Y)$. We write M(E) for the category of left E-modules and M'(E) for the category of right E-modules.

In this paper we introduce and study an idea of distinguishable modules, which appears quite often in the representation theory of finite groups, by making use of a contravariant representation functor Ψ of M(A) into M(E) (see §1) and a covariant representation functor Φ of M(A) into M'(E) (see §3).

DEFINITION (see Definition (2.1)). Assume that an A-module Y is decomposed into a finite number of indecomposable components, say

$$Y = Y_1 \oplus Y_2 \oplus \cdots \oplus Y_r$$
,

and the left A-submodules of soc Y satisfy the D.C.C. Then an indecomposable component Y_{ρ} , where $1 \leq \rho \leq r$, is said to be distinguishable (by socle) if soc Y_{ρ} is multiplicity free and $Y_{\rho} \cong Y_{\sigma}$ when soc Y_{ρ} and soc Y_{σ} have a same simple submodule up to isomorphism, for any $1 \leq \sigma \leq$ r. When all the indecomposable components $Y_{\rho's}$ are distinguishable, we say that Y has a distinguishable decomposition $Y = Y_1 \bigoplus Y_2 \bigoplus \cdots \bigoplus Y_r$.

For example when the submodules of Y satisfy the D.C.C. and soc Y is multiplicity free, then Y has a distinguishable decomposition (see [1, Corollary 6.11], [4], [5, Theorem 3.17] and [6, Proposition 2.8 and Corollary 3.5]).

Our main result is as follows

Theorem (see Theorem (2.7)): Let E, Ψ be as above. Assume that Received October 13, 1980

* This research was supported by the Danish Natural Science Research Council, and partly supported by the Alexander von Humboldt Foundation and the Sakkokai Foundation.