Токуо J. Матн. Vol. 5, No. 1, 1982

Uniqueness for the Characteristic Cauchy Problem and its Applications

Hitoshi URYU

Waseda University

Introduction

In this paper we will consider the local uniqueness for Fuchsian partial differential operators (See [2]) with C^{∞} -coefficients and as its applications we shall give some examples in the case of partial differential operators with characteristic or non-characteristic initial surfaces.

The local uniqueness for a Fuchsian partial differential operator has been obtained by Baouendi and Goulaouic [2], when its operator has analytic coefficients with respect to space variables x. Recently Alinhac and Baouendi [1] studied this problem for some characteristic pseudodifferential operators on a compact manifold. For other many works for characteristic operators, we wish the reader to consult references of [1] and [2].

On the other hand in the case of a non-characteristic initial surface there is well-known Holmgren's theorem for a differential operator with analytic coefficients. Calderón [3] showed the local uniqueness result for non-characteristic partial differential operators with non-analytic coefficients, assuming that coefficients of a principal symbol are real-valued and its characteristic roots are simple from each other. When characteristic roots have multiplicity, many works are found in Hörmander [4], Mizohata [6], Matsumoto [5], Watanabe [11], Zeman [13] and others. In the above refered papers, all the authors assume that a imaginary part of each characteristic root never vanishes or vanishes identically. When this assumption is not satisfied, Kumano-go [12], Nirenberg [7] studied some partial differential operators and recently Strauss and Trèves [8] considered a first order partial differential operator.

The aim of this paper is to show that for some differential operators with C^{∞} -coefficients we can treat the local uniqueness for a characteristic Cauchy problem and non-characteristic one in the same frame. In our

Received December 18, 1980