TOKYO J. MATH. Vol. 5, No. 1, 1982

A Construction of the Groups of Units of Some Number Fields from Certain Subgroups

Ken NAKAMULA

Tokyo Metropolitan University

Introduction

All number fields we consider are in the complex number field. The symbol $\langle S \rangle$ denotes a multiplicative group generated by an element or a set S. For any complex number x, a *j*-th root of x, which is taken to be positive real if x is positive real, is denoted by $\sqrt[3]{x}$.

0.1. For a finite algebraic number field k, let E_k be the group of units of k and W_k be the torsion part of E_k . Then E_k is generated by W_k and by a set $\{\varepsilon_j | j=1, \dots, r\}$ of fundamental units of k. The number r is called the *Dirichlet number* of k. In general, some geometrical calculation is necessary to obtain fundamental units of k (see [1] or Chap. $2, \S 5.3 \text{ of } [2]$). Those methods are very complicated when r is large. If k is a real abelian number field, there is an effective method, which requires no geometrical calculation, to obtain fundamental units of k (see [5]). Our main interest is, in case k is not galois or galois but not abelian over Q, to construct $\{\varepsilon_j | j=1, \dots, r\}$ from certain subgroups of E_k without any geometrical calculation. Let E'_k be the subgroup of E_k generated by W_k and the units of all proper subfields of k. If the index $(E_k: E'_k)$ is finite, we may construct E_k from E'_k . Such a problem is treated in some cases when k is galois over Q, see [6] and [7] for example. If $(E_k: E'_k)$ is not finite, we consider the following subgroup H_k , the group of relative units of k, in addition to E'_{k} :

 $H_k = \{ \varepsilon \in E_k \, | \, N_{k/k_1}(\varepsilon) \in W_k \text{ for any proper subfield } k_1 \text{ of } k \}$.

The object of the present article is to show a way how E_k is constructed from E'_k and H_k in some cases. Our main tool is Proposition 1 in §1, which can be applied to k of types as in 1.2. To explain our actual calculation, we take for k a subfield of a dihedral extension of

Received January 20, 1981