A Construction of the Groups of Units of Some Number Fields from Certain Subgroups

Ken NAKAMULA
Tokyo Metropolitan University

Introduction

All number fields we consider are in the complex number field. The symbol $\langle S\rangle$ denotes a multiplicative group generated by an element or a set S. For any complex number x, a j-th root of x, which is taken to be positive real if x is positive real, is denoted by $\sqrt[3]{x}$.
0.1. For a finite algebraic number field k, let E_{k} be the group of units of k and W_{k} be the torsion part of E_{k}. Then E_{k} is generated by W_{k} and by a set $\left\{\varepsilon_{j} \mid j=1, \cdots, r\right\}$ of fundamental units of k. The number r is called the Dirichlet number of k. In general, some geometrical calculation is necessary to obtain fundamental units of k (see [1] or Chap. 2 , $\S 5.3$ of [2]). Those methods are very complicated when r is large. If k is a real abelian number field, there is an effective method, which requires no geometrical calculation, to obtain fundamental units of k (see [5]). Our main interest is, in case k is not galois or galois but not abelian over \boldsymbol{Q}, to construct $\left\{\varepsilon_{j} \mid j=1, \cdots, r\right\}$ from certain subgroups of E_{k} without any geometrical calculation. Let E_{k}^{\prime} be the subgroup of E_{k} generated by W_{k} and the units of all proper subfields of k. If the index ($E_{k}: E_{k}^{\prime}$) is finite, we may construct E_{k} from E_{k}^{\prime}. Such a problem is treated in some cases when k is galois over \boldsymbol{Q}, see [6] and [7] for example. If ($E_{k}: E_{k}^{\prime}$) is not finite, we consider the following subgroup H_{k}, the group of relative units of k, in addition to E_{k}^{\prime} :

$$
H_{k}=\left\{\varepsilon \in E_{k} \mid N_{k / k_{1}}(\varepsilon) \in W_{k} \text { for any proper subfield } k_{1} \text { of } k\right\} .
$$

The object of the present article is to show a way how E_{k} is constructed from E_{k}^{\prime} and H_{k} in some cases. Our main tool is Proposition 1 in $\S 1$, which can be applied to k of types as in 1.2. To explain our actual calculation, we take for k a subfield of a dihedral extension of

[^0]
[^0]: Received January 20, 1981

