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Introduction

All number fields we consider are in the complex number field. The
symbol $\langle S\rangle$ denotes a multiplicative group generated by an element or
a set $S$ . For any complex number $x$ , a j-th root of $x$ , which is taken
to be positive real if $x$ is positive real, is denoted by $\sqrt[J]{x}$ .

0.1. For a finite algebraic number field $k$ , let $E_{k}$ be the group of
units of $k$ and $W_{k}$ be the torsion part of $E_{k}$ . Then $E_{k}$ is generated by
$W_{k}$ and by a set $\{\epsilon_{l}|j=1, \cdots, r\}$ of fundamental units of $k$ . The number

$\gamma$ is called the Dirichlet number of $k$ . In general, some geometrical
calculation is necessary to obtain fundamental units of $k$ (see [1] or Chap.
2, \S 5.3 of [2]). Those methods are very complicated when $r$ is large.
If $k$ is a real abelian number field, there is an effective method, which
requires no geometrical calculation, to obtain fundamental units of $k$ (see
[5]). Our main interest is, in case $k$ is not galois or galois but not
abelian over $Q$ , to construct $\{\epsilon_{j}|j=1, \cdots, r\}$ from certain subgroups of
$E_{k}$ without any geometrical calculation. Let $E_{k}^{\prime}$ be the subgroup of $E_{k}$

generated by $W_{k}$ and the units of all proper subfields of $k$ . If the index
$(E_{k}:E_{k}^{\prime})$ is finite, we may construct $E_{k}$ from $E_{k}^{\prime}$ . Such a problem is
treated in some cases when $k$ is galois over $Q$ , see [6] and [7] for example.
If $(E_{k}:E_{k})$ is not finite, we consider the following subgroup $H_{k}$ , the group
of relative units of $k$ , in addition to $E_{k}^{\prime}$ :

$H_{k}=$ {$\epsilon eE_{k}|N_{k/k_{1}}(\epsilon)eW_{k}$ for any proper subfield $k_{1}$ of $k$}.

The object of the present article is to show a way how $E_{k}$ is con-
structed from $E_{k}^{\prime}$ and $H_{k}$ in some cases. Our main tool is Proposition 1
in \S 1, which can be applied to $k$ of types as in 1.2. To explain our
actual calculation, we take for $k$ a subfield of a dihedral extension of
Received January 20, 1981


