TOKYO J. MATH. VOL. 5, NO. 2. 1982

Ambiguous Numbers over $P(\zeta_3)$ of Absolutely **Abelian Extensions of Degree 6**

Hisako FURUYA

Tsuru University (Communicated by J. Kojima)

Let K be an abelian number field of degree 6 over the rational number field P and suppose K contains a primitive 3rd root ζ_3 of unity. Then the ambiguous number of $K/P(\zeta_3)$ is 3^{2t-2} when 3 unramifies in $K/P(\zeta_3)$ and it is 3^{2t-1} when 3 ramifies in $K/P(\zeta_3)$ where t+1 is the number of prime numbers which ramify in K/P.

Let Γ be the genus field of K/P, then Γ/K is unramified and the number of these ideal classes of K which are principal in Γ is a multiple of $(\Gamma: K)$ and it is larger than $(\Gamma: K)$ if $t \ge 2$.

§1. Preliminaries.

Throughout this paper we shall use the following notations.

P The rational number field.

 ζ_n A primitive *n*-th root of unity.

In this paper, the conductor of K is the minimal number f such that $K \subset P(\zeta_f)$ when K is abelian over P.

I_{κ}	The group of ideals in K .
P_{κ}	The group of principal ideals in K .
$h_{K} = [I_{K}: P_{K}]$	The class number of K.
થ~1	An ideal $\mathfrak A$ is principal in the field.
A~V	Ideals \mathfrak{A} and \mathfrak{B} are contained in a same ideal class in
	the field.

We call $\mathfrak{A} \in I_{\kappa}$ an ambiguous ideal if $\mathfrak{A}^{\sigma} = \mathfrak{A}$ for all $\sigma \in \text{Gal}(K/k)$ and we call $\mathfrak{A} \in I_{\kappa}$ an ambiguous class ideal if $\mathfrak{A}^{1-\sigma} \in P_{\kappa}$ for all $\sigma \in \text{Gal}(K/k)$.

- $A_{0,K/k}$ The subgroup of I_K/P_K consisting of classes each of which contains an ambiguous ideal for K/k.
- $a_{0,K/k}$ The order of $A_{0,K/k}$.

 $A_{K/k}$ The subgroup of I_K/P_K consisting of classes each of which Received May 21, 1981