Ambiguous Numbers over $P\left(\zeta_{3}\right)$ of Absolutely Abelian Extensions of Degree 6

Hisako FURUYA
Tsuru University
(Communicated by J. Kojima)

Let K be an abelian number field of degree 6 over the rational number field P and suppose K contains a primitive 3 rd root ζ_{3} of unity. Then the ambiguous number of $K / P\left(\zeta_{3}\right)$ is $3^{2 t-2}$ when 3 unramifies in $K / P\left(\zeta_{3}\right)$ and it is $3^{2 t-1}$ when 3 ramifies in $K / P\left(\zeta_{3}\right)$ where $t+1$ is the number of prime numbers which ramify in K / P.

Let Γ be the genus field of K / P, then Γ / K is unramified and the number of these ideal classes of K which are principal in Γ is a multiple of ($\Gamma: K$) and it is larger than ($\Gamma: K$) if $t \geqq 2$.

§ 1. Preliminaries.

Throughout this paper we shall use the following notations.
P The rational number field.
ζ_{n} A primitive n-th root of unity.
In this paper, the conductor of K is the minimal number f such that $K \subset P\left(\zeta_{f}\right)$ when K is abelian over P.
$I_{K} \quad$ The group of ideals in K.
$P_{K} \quad$ The group of principal ideals in K.
$h_{K}=\left[I_{K}: P_{K}\right]$ The class number of K.
$\mathfrak{Q} \sim 1 \quad$ An ideal \mathfrak{A} is principal in the field.
$\mathfrak{A} \sim \mathfrak{B} \quad$ Ideals \mathfrak{A} and \mathfrak{B} are contained in a same ideal class in the field.
We call $\mathfrak{A} \in I_{K}$ an ambiguous ideal if $\mathfrak{A}^{\sigma}=\mathfrak{A}$ for all $\sigma \in \operatorname{Gal}(K / k)$ and we call $\mathfrak{A} \in I_{K}$ an ambiguous class ideal if $\mathfrak{A}^{1-\sigma} \in P_{K}$ for all $\sigma \in \operatorname{Gal}(K / k)$.
$A_{0, K / k}$ The subgroup of I_{K} / P_{K} consisting of classes each of which contains an ambiguous ideal for K / k.
$a_{0, K / k}$ The order of $A_{0, K / k}$.
$A_{K / k} \quad$ The subgroup of I_{K} / P_{K} consisting of classes each of which

