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This paper is concerned with the approximation of weak*-measurable
functions by means of simple functions. Let $X$ be a Banach space, $X^{*}$

the dual space of $X$, and let $(S, \Sigma, \mu)$ be a finite nonnegative complete
measure space. In this paper we mainly treat with $X^{*}$ -valued functions
defined on the set $S$ ; hence we call $(S, \Sigma, \mu)$ the base measure space in
the following. A function $f:S\rightarrow X^{*}$ is said to be weak*-measurable if
for every $x\in X$ the numerical function $\langle x, f\rangle$ is $\mu$-measurable. This
kind of definition of measurability for $X^{*}$-valued functions does not assume
the existence of approximate sequence of simple functions and is generi-
cally called a scalar measurability. On the other hand, a function
$f:S\rightarrow X^{*}$ is said to be strongly measurable if there exists a sequence
$(f_{n})$ of simple functions with $\lim||f_{n}(s)-f(s)\Vert=0$ a.e.; hence the existence
of an approximate sequence $(f_{n})$ of simple functions is involved in the
definition itself. By use of the martingale argument, it is possible to
find for every norm-bounded weak*-measurable function $f:S\rightarrow X^{*}$ a
generalized sequence $(f_{\alpha})$ of simple functions approximating $f$ in the sense
that $\lim_{\alpha}||\langle x, f_{a}\rangle-\langle x, f\rangle\Vert_{L^{1}(\mu)}=0$ for each $x\in X$. However, the $weak^{*}-$

measurability of a function $f$ does not necessarily imply the existence
of a sequence $(f_{n})$ of a countable number of simple functions that
approximate $f$ in the sense that
$(^{*})$ $\langle x, f_{n}\rangle\rightarrow\langle x, f\rangle$ a.e.
for each $x\in X$, where the null set on which the convergence does not
hold may vary with $x$ . More precisely, such sequential approximation
of weak*-measurable functions by simple functions need not be possible
unless the Banach space $X$ or else the base measure space $(S, \Sigma, \mu)$ i8
suitably chosen. We will see later that even a weakly measurable
function does not necessarily have approximate sequences if the base
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