Токуо Ј. Матн. Vol. 6, No. 1, 1983

On the Sequential Approximation of Scalarly Measurable Functions by Simple Functions

Kazuo HASHIMOTO

Waseda University (Communicated by J. Wada)

This paper is concerned with the approximation of weak*-measurable functions by means of simple functions. Let X be a Banach space, X^* the dual space of X, and let (S, Σ, μ) be a finite nonnegative complete measure space. In this paper we mainly treat with X^* -valued functions defined on the set S; hence we call (S, Σ, μ) the base measure space in the following. A function $f: S \rightarrow X^*$ is said to be weak*-measurable if for every $x \in X$ the numerical function $\langle x, f \rangle$ is μ -measurable. This kind of definition of measurability for X^* -valued functions does not assume the existence of approximate sequence of simple functions and is generi-On the other hand, a function cally called a scalar measurability. $f: S \rightarrow X^*$ is said to be strongly measurable if there exists a sequence (f_n) of simple functions with $\lim ||f_n(s) - f(s)|| = 0$ a.e.; hence the existence of an approximate sequence (f_n) of simple functions is involved in the definition itself. By use of the martingale argument, it is possible to find for every norm-bounded weak*-measurable function $f: S \rightarrow X^*$ a generalized sequence (f_{α}) of simple functions approximating f in the sense that $\lim_{\alpha} \|\langle x, f_{\alpha} \rangle - \langle x, f \rangle \|_{L^{1}(\mu)} = 0$ for each $x \in X$. However, the weak*measurability of a function f does not necessarily imply the existence of a sequence (f_n) of a countable number of simple functions that approximate f in the sense that

$$(*) \qquad \langle x, f_n \rangle \longrightarrow \langle x, f \rangle \quad \text{a.e.}$$

for each $x \in X$, where the null set on which the convergence does not hold may vary with x. More precisely, such sequential approximation of weak*-measurable functions by simple functions need not be possible unless the Banach space X or else the base measure space (S, Σ, μ) is suitably chosen. We will see later that even a weakly measurable function does not necessarily have approximate sequences if the base Received March 19, 1982