Classification of Periodic Maps on Compact Surfaces: I

Kazuo YOKOYAMA

Sophia University

Introduction.

A homeomorphism $f: M \rightarrow M$ of a space M onto itself is called a periodic map on M with period n if $f^{n}=$ identity and $f^{k} \neq$ identity ($1 \leqq$ $k<n)$. We say that a periodic map f on M is equivalent to a periodic $\operatorname{map} f^{\prime}$ on M^{\prime} if there exists a homeomorphism $h: M \rightarrow M^{\prime}$ such that $f h=h f^{\prime}$. In this paper, we will obtain classification of orientation-preserving periodic maps on compact orientable surfaces. Classification of orientation-reversing periodic maps on compact orientable surfaces and periodic maps on compact non-orientable surfaces will be given in the forthcoming paper [5].

We will consider a pair (f, M) where M is a compact connected surface and f is a periodic map on M with period n. Let $\mathscr{S}_{k}=\mathscr{S}_{k}(f)=$ $\left\{x \in M ; f^{k}(x)=x, f^{i}(x) \neq x(1 \leqq i<k)\right\} \quad$ and $\quad \mathscr{S}=\mathscr{S}(f)=\bigcup_{k=1}^{n-1} \mathscr{S}_{k}(f)=\{x \in M$; $\left.1 \leqq \exists k<n, f^{k}(x)=x\right\}$, say a singular set of f. Let P_{n} be a set of (f, M) satisfying the condition that $\mathscr{S}(f)$ consists of finite points in \dot{M} (may be empty). For an element (f, M), we obtain its orbit space M / f from M by the identification of x with $f(x)$ for $x \in M$.

Proposition 1 (Whyburn [4]). The orbit space M / f is a compact surface.

Let $p: M \rightarrow M / f$ be a canonical map. Then p is an n-fold cyclic branched covering map of M / f with a branched set $p(\mathscr{S}(f))$. For a compact connected surface X and a set S of finite points in \dot{X}, we denote by $P_{n}(X, S)$ a set of elements (f, M) of P_{n} satisfying the following conditions;
(1) the orbit space M / f is homeomorphic to X,
(2) the canonical map $p: M \rightarrow X$ is an n-fold cyclic branched covering map with a branched set S.

Suppose that (f, M) is equivalent to (f^{\prime}, M^{\prime}). Clearly there exists a

