Configurations and Invariant Gauss-Manin Connections for Integrals II

Kazuhiko AOMOTO

Nagoya University
(Communicated by T. Saito)

In this note, by using certain canonical invariant 1-forms, we shall compute explicitly the formulae of Gauss-Manin connections for the integrals which have been investigated in [1] and prove [3] Theorem 2 in the hyperquadric case (see Theorems 1, 2 and 3). We shall follow the terminologies used in [1].

§1. Conformal case.

First, we are going to find out an explicit representation of invariant Gauss-Manin connection for the following integral which admits conformal transformations:

$$(1.1) \qquad \widehat{\varphi}(\phi)(=\widehat{\varphi}(\lambda_0, \lambda_1, \dots, \lambda_m; \phi))$$

$$= \int (x_1^2 + \dots + x_n^2 + 1)^{\lambda_0} \widehat{f}_1(x)^{\lambda_1} \dots \widehat{f}_m^{\lambda_m}(x) dx_1 \wedge dx_2 \wedge \dots \wedge dx_n,$$

where $\hat{f}_1, \dots, \hat{f}_m$ denote general linear functions: $\hat{f}_j = \sum_{\nu=1}^n u_{j\nu} x_{\nu} + u_{j0}$. Here we use the variables $\sqrt{-1} x_{\nu}$ instead of x_{ν} in [1] (J, III₀).

As in [1], we define the symmetric matrix of (m+1) order $A = ((a_{ij}))$ $0 \le i, j \le m$ by putting $a_{ij} = \sum_{\nu=0}^{n} u_{i\nu} u_{j\nu}$ and $a_{i0} = a_{0i} = u_{i0}$, where we normalize $a_{ii} = 1$. We denote by $A \begin{pmatrix} I \\ J \end{pmatrix}$ the minor determinant of the i_1, \dots, i_p -th rows and the j_1, \dots, j_p -th columns for $I = (i_1, \dots, i_p)$ and $J = (j_1, \dots, j_p)$, and write A(I) for $A \begin{pmatrix} I \\ I \end{pmatrix}$.

It has been stated in [1] Lemma 3.3 that the above integrals have a basis of functions:

$$\widehat{\varphi}(i_{\scriptscriptstyle 1}\cdots i_{\scriptscriptstyle p}) = \widehat{T}_{i_{\scriptscriptstyle 1}}^{\scriptscriptstyle -1}\cdots \widehat{T}_{i_{\scriptscriptstyle p}}^{\scriptscriptstyle -1}\widehat{\varphi}(\phi) = \int \widehat{U}(\lambda) \frac{dx_{\scriptscriptstyle 1}\wedge\cdots\wedge dx_{\scriptscriptstyle n}}{\widehat{f}_{i_{\scriptscriptstyle 1}}\cdots \widehat{f}_{i_{\scriptscriptstyle p}}}$$

Received April 26, 1982 Revised October 12, 1982